

21 OCTOBER 2021 16:00 CEST

IWA Specialist Group on Modelling and Integrated Assessment Webinar Series **Modelling Wastewater Treatment Resilience** for Improved Decision Making and Resource Recovery

Seda Sucu

Ulf Jeppsson Lund University

Lluís Corominas **Timothy Holloway** University of Portsmouth University of Exeter University of Portsmouth Catalan Institute for Water Research

Guangtao Fu

Maria Molinos-Senante **Pontificia Universidad** Católica de Chile

The webinar is going to be recorded and shared on the MIA SG Youtube channel afterward.

MIA Welcome Note

IWA Modelling and Integrated Assessment Specialist Group

Dr. Ulf Jeppsson(Chair of MIA SG)Dr. Elena Torfs(Vice-chair of MIA SG)

inspiring change

MODELLING AND INTEGRATED ASSESSMENT SPECIALIST GROUP (MIA SG)

"This group targets people from research, consulting companies, institutions and operators to think along the use of models and computing tools to support the understanding, management and optimization of water systems."

PRIORITIES

- Interact with other IWA SGs and other professional organizations
- Organize specialized conferences, sessions and workshops
- Engage and activate YWPs in the domain.

CURRENTLY 1900 MEMBERS

How to find us

Website: http://iwa-mia.org/

https://iwa-connect.org

MIA SG: ACTIVITIES

Task Groups (TGs)

- Benchmarking of Control Strategies for WWTPs (BSM)
 AND Good Modelling Practice (GMP) (Both finished)
- Design and Operations Uncertainty (DOUT)
- Generalised Physicochemical Modelling (PCM)
- Use of Modelling for Minimizing GHG Emissions from Wastewater Systems (GHG)
- Membrane Bioreactor Modelling and Control (MBR)
- Good Modelling Practice in Water Resource Recovery Systems (New)

Working Groups (WGs)

- Integrated Urban Water Systems (IUWS)
- Computational Fluid Dynamics (CFD)
- Good Modelling Practice (GMP)

Conferences / Events

- WRRmod
- Watermatex

Scientific and Technical Report No. 23 Guidelines for Benchmarking of Uncertainty in The Use of Water Ouality Using Activated **Control Strategies** Wastewater Treatment **Sludge Models** for Wastewater Design and Operation for Minimizing Wastewater Utility **Treatment Plants** Greenhouse Gas Footprints and Future Directions Sylvie Gillot, Guenter Langergraber, Juli Andy Shaw Inne Takana, Stefan Winki WA Task Group on Design and Ope DMA 1MA IMA STR STR STR STR (Sept. 2012) (Sept. 2014) (2021)(2021)

MIA SG: UPCOMING CONFERENCES

8th Water Resource Recovery Modelling seminar (WRRmod2023)

- Location: Stellenbosch, South Africa, January 2023
- Chair: Dr. David Ikumi (Univ. Cape Town)

11th Symposium on Modelling and Integrated Assessment (Watermatex2023)

- Location: Québec City, Canada, late summer 2023
- Chair/vice-chair: Prof. Peter Vanrolleghem (Univ. Laval)/Dr. Elena Torfs (Univ. Ghent)

FIND MIA SG ON SOCIAL MEDIA

Follow the Modelling and Integrated Assessment Specialist Group on:

https://iwa-connect.org/group/modellingand-integrated-assessment-mia/timeline

https://www.linkedin.com/company/iwamia-specialist-group-on-modelling-andintegrated-assessment

https://twitter.com/iwa_mia_sg

MIA SG open web site

http://iwa-mia.org

to get informed about our latest events, publications and news!

DEFINITION OF RESILIENCE

Resilience evaluation against a specified stressor

Resilience to a stressor presented by Juan-García, (2017) adapted from Mugume, (2015)

"Resilience is the capacity of a system to absorb disturbance and reorganize while undergoing change so as to retain essentially the same pre-disturbance process, form, identity, and feedbacks" (Walker et al., 2004)

THEMES COVERED IN THIS WEBINAR

- The use of existing modelling practices to evaluate the dynamic resilience of wastewater treatment processes
- The challenge of visually communicating modelled outputs to operational staff

• The move toward general resilience assessment for urban wastewater systems

 The challenge of modelling decisions on optimal process streams for resource recovery

AGENDA AND HOUSEKEEPING

Speaker 1 *Timothy Holloway (University of Portsmouth, UK)*

Speaker 2

Guangtao Fu (University of Exeter, UK)

Speaker 3

Seda Sucu (University of Portsmouth, UK)

Q&A Session Moderator: Maria

Molinos-Senante (Universidad Católica de Chile)

- This session is being recorded;
- Microphones and cameras have been disabled due to the large number of attendees;
- The normal chat function is disabled;
- Please put any questions and comments you may have in the Q&A and we will do our best to answer them during the session (in writing or orally).

Coupling conventional modelling with resilience theory for improved operational decision making

Timothy Holloway | Senior Scientific Officer timothy.Holloway@port.ac.uk

PRESENTATION AGENDA

1. Introduction

2. Conceptual basis for dynamic resilience

3. State based simulations

4. Dynamic resilience using actual instrument data

5. Conclusions

1. INTRODUCTION

Direct stressors

- Global population increase by 27% before the end of the century (OWID, 2019; UNEP, 2012). (1.4 x planetary carrying capacity)
- Dependent on our path temperatures could rise by > 2°C over pre- industrial levels (Masson-Delmotte, 2021)
- Rainfall intensity increased by 12 24 % (Fischer et al. 2014; Hansen et al. 2010)

Met Office UK heavy rainfall / floods Extended periods of extreme winter rainfall are now 7 times more likely.

(Met Office, 2017)

Challenge: stressors generating complex dynamic process stresses

Impact on wastewater production

- Increase/reduction of municipal/industrial wastewaters with transient populations (COVID 19) (Kalbusch, 2020)
- Dilution of wastewaters during storm events
- Highly concentrated wastewaters in extended dry periods

2. PROFESSIONAL SURVEY: PROCESS STRESS (EFFECT)

Holloway, T.G., Williams, J.B., Ouelhadj, D., Cleasby, B., 2019. Process stress in municipal wastewater treatment processes: a new model for monitoring resilience. Process Saf. Environ. Prot. 132, 169–181. https://doi.org/10.1016/j.psep.2019.09.032

Stressor event duration

PROPOSED EXTENSION OF RESILIENCE METHODS

Stressor causing a process stress event

Stressor causing process relaxation

Proposed definition of dynamic resilience

"The dynamic, temporal variation of stressors and process stresses in response to events outside of the <u>original design intent</u>"_____

May be unavailable

CONCEPTUAL BASIS FOR DYNAMIC RESILIENCE

"Stressors are the cause and process stress is the effect"

μια

3. SCENARIO SIMULATIONS: PRIMARY SEDIMENTATION

- 1. Monte-Carlo simulations for state simulation
- 2. Dynamic only by iteration (not based on actual data)
- 3. Follows the expected sedimentation outcomes

Holloway, T.G., Williams, J., Ouelhadj, D., Cleasby, B., 2021. Process stress, stability and resilience in wastewater treatment processes: a novel conceptual methodology. J. Clean. Prod. 282, 124434. https://doi.org/10.1016/j.jclepro.2020.124434

4. DATA DRIVEN DYNAMIC RESILIENCE ANALYSIS: ACTIVATED SLUDGE

THE CHALLENGE OF REAL DATA

- 1. Average not representative (skewed central tendency)
- 2. Non-normal (or lognormal) distributions a challenge for off the shelf algorithms
- 3. Skewed data occurs due to inconsistencies, storm flows and calibration

But what can we learn from this?

OPERATING CONDITION EXTRACTION

TIME BASED EVALUATION OF STRESSORS AND PROCESS STRESSES

DYNAMIC RESILIENCE FROM SELF ORDERING WINDOWS

1) Self ordering window for stressor (flow)

2) Self ordering window for process stress (biomass)

"Like a fingerprint, actual instrument data has been visualised to generate process knowledge"

Holloway, T., Williams, J.B., Ouelhadj, D., Yang, G., 2021. Dynamic resilience for biological wastewater treatment processes: Interpreting data for process management and the potential for knowledge discovery. J. Water Process Eng. 42, 102170. https://doi.org/10.1016/j.jwpe.2021.102170

Heterotrophic biomass (mg L⁻¹)

DYNAMIC RESILIENCE OF AN ENTIRE PLANT: NEXT STEPS

Process stresses Activated sludge

Process stresses Humus settlement

5. CONCLUSIONS

 Dynamic resilience of wastewater assets requires separation of stressors from process stresses

 It has been possible to use actual instrument data to simulate and visualise stressors and process stresses

Dynamic stressors have been identified from the data and used to simulate process stresses

Get involved with our survey:

https://www.surveymonkey.co.uk/r/33FQ9BQ

AGENDA AND HOUSEKEEPING

Speaker 1 Timothy Holloway (University of Portsmouth, UK)

Speaker 2 *Guangtao Fu (University of Exeter, UK)*

Speaker 3 Seda Sucu (University of Portsmouth, UK)

Q&A Session moderator: Maria

Molinos-Senante (Universidad Católica de Chile)

- This session is being recorded;
- Microphones and cameras have been disabled due to the large number of attendees;
- The normal chat function is disabled;
- Please put any questions and comments you may have in the Q&A and we will do our best to answer them during the session (in writing or orally).

IWA Specialist Group on Modelling and Integrated Assessment Webir Series 21/10/2021

Guangtao Fu

Professor of Water Intelligence Turing Fellow, Alan Turing Institute

Definitions

Specified resilience: "the resilience of some particular part of the system... to one or more identified kinds of shocks" (Folke et al. 2010)

What about trade-offs?

What about the unknowns?

General resilience: "the resilience of any and all parts of a system to all kind of shocks including novel ones" (Folke et al. 2010)

Assessment challenging

Typically qualitative or property-based

AIM: To provide a quantitative assessment approach of general resilience which is based on system performance

STEP 1: Identify all system failure modes

STEP 2: *Identify all impacts*

Impacts	Measures of strain
1. Receiving water DO concentration (<4mg/l constitutes failure)	Normalised DO failure magnitude
	Normalised DO failure duration
2. Receiving water un-ionised ammonia concentration	Normalised AMM failure magnitude
(>0.068mg/l constitutes failure)	Normalised AMM failure duration

STEP 3: *Generate impact / failure mode combinations*

Number of stresses applied	Number of combinations	Number of stresses applied	Number of combinations	Number of stresses applied	Number of combinations
1	14	6	3003	11	364
2	91	7	3432	12	91
3	364	8	3003	13	14
4	1001	9	2002	14	1
5	2002	10	1001		

TOTAL: 16,383 system failure mode combinations

STEP 4: Specified resilience assessment for each impact / failure mode combination

Interventions development

STEP 1: Identify priority level of service measures

- DO level less resilient than AMM, based on failure duration
- Reduce DO failures when no system failures

STEP 2: Identify priority system failure modes

STEP 3: Develop interventions

- → Address priority level of service measures and system failure modes identified
 - 1. Increase flow attenuation in catchments
 - 2. Increase maximum outflow from sewer storage tank preceding WWTP
 - 3. Increase capacity of sewer storage tank preceding WWTP

- 4. Increase activated sludge aeration tank volume
- 5. Increase capacity of WWTP storm tank

Concluding remarks

- A middle state based approach allows the potential effects on level of service resulting from any threat to be determined without knowledge of unknowns
- General resilience can be decomposed into multiple contributing components, each of which can be calculated individually
- General resilience assessment enables identification of priority level of service measures and failure modes
- Substantial improvement in specified resilience may be achieved with relative ease but achieving significant improvement in general resilience is challenging

IWA Specialist Group on Modelling and Integrated Assessment Webi Series 21/10/2021

Thanks to the whole S & S team: Prof David Butler, Prof Raziyeh Farmani & Dr Chris Sweetapple.

Sweetapple C., Fu G., Farmani R., Butler D. General resilience: conceptual formulation and quantitative assessment for intervention development in the urban wastewater system. *Water Research* (in review).

The Alan Turing Institute

Safe&SuRe Water management

AGENDA AND HOUSEKEEPING

Speaker 1 *Timothy Holloway (University of Portsmouth, UK)*

Speaker 2

Guangtao Fu (University of Exeter, UK)

Speaker 3 Seda Sucu (University of Portsmouth, UK)

Q&A Session moderator: Maria

Molinos-Senante (Universidad Católica de Chile)

- This session is being recorded;
- Microphones and cameras have been disabled due to the large number of attendees;
- The normal chat function is disabled;
- Please put any questions and comments you may have in the Q&A and we will do our best to answer them during the session (in writing or orally).

University of Portsmouth, 21.10.2021 Dr Seda Sucu, seda.sucu@port.ac.uk

AGENDA

- Description, Aims & Objectives of NEREUS Project
- Sonceptual Framework of NEREUS DST
- Weighted Multi-Objective Non-Linear Programming Model
- Case Study
- NEREUS DST Algorithm
- **Conclusion and Future Recommendation**
- **Questions and Answers**

NEREUS PROJECT New energy and resources from urban sanitation

The NEREUS project boosts the adoption of technologies that recover resources, water and energy from wastewater in urban areas.

Energy recovery

Goals

- Performance efficiency test of demo technologies
- Provide strategy of involving DMs more in the selection of technologies
- Develop a DST provide economic, environmental, social and technical impact of various technologies
- A strategy to create acceptance of the community

NEREUS PROJECT PILOT PARTNERS

Water Reuse Nutrient Recovery Energy Recovery

Antwerpen Nieuw-Zuid, BE water-link

Nieuwe Dokken Gent, BE Ducoop

<u>Saint-Omer WWTP, FR</u> CAPSO

<u>Rotterdam/Delft, NL</u> Evides

Peel Common WWTP, UK Southern Water

NEREUS PROJECT KNOWLEDGE PARTNERS

Prof Djamila Ouelhadj

Prof John Williams

Dr Brett Martinson

Dr Peter Cruddas

Dr Kevin Willis

Dr Ramazan Esmeli

Dr Hans Cappon

MSc Maria van Schaik

Home User Manual Knowledge Library User Input DST Output FAQ

Welcome to NEREUS Decision Support Tool

NEREUS DST aims to enables public and private decision-makers to evaluate the impacts of different recovery options and generate resource recovery trains with specific information on suitable technologies.

AIMS & MOTIVATIONS

Generating optimal treatment trains is challenging due to:

- 1. the vast number of available unit processes
- 2. the variability of wastewater influents in quantity and quality with time and location
- 3. the variability in the influence and selected unit process has on the downstream processes
- 4. multiple targeted resources
- 5. multiple conflicting objectives
- 6. geographical and social context based regulatory requirements

CONCEPTUAL FRAMEWORK

KEY PERFORMANCE INDICATORS

MIXED INTEGER LINEAR PROGRAMMING MODEL

MODI	ELLING COMPONENTS
Sets	 Unit process groups Tasks Type of recovery products Criteria
Parameters	 Unit process removal/ recovery percentages Targeted products Product characteristics Sustainability objective targets
Decision variables	Selection of unit process
Constraints	 Mass calculation of recovery products Ensuring the unit process for recovery Ensuring compatibility between unit processes Compliance with regulations
Objective function	 Minimising the weighted sum of normalised distance from targeted objectives

CASE STUDY

- Weighted multi-objective model is implemented in GAMS (academic version) and BARON solver is used to solve the model
- Solution time is <=1 minute

CASE STUDY RESULTS

		Population	Influent	Influent	Influent	Influent	Influent	
	Flow	Equivalent	COD	TSS	TP	ΤN	Lead	Influent Vir
Scenarios	(m3/day)	(# of people)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(cfu/100ml)
Scenario 1	100 000	400000	464	193	6.6	60	0.1	1000000
Scenario 2	3 500	20000	500	300	11	44	0.1	1000000

Criteria	Econ	omic	Environmental		Social		Technical	Weighted	
KPIs	EAC	PIG	Noise Odor Land A		Affordability	Acceptability	Flexibility	Multi-obj	
Units	euro/year	euro/year	dB	-	m2	-	-	-	-
Scenario 1	€ 53,535,280	€ 27,114,910	24	3	218148	15	3	6	0.42
Scenario 2	€ 4,915,964	€ 881,218	24	4	4119	8	3	6	0.50

Final concentration	Unit	Scenario 1- Large	Scenario 2- Small	Drinking Water
COD	mg/L	0.05	0.05	0.1
TSS	mg/L	0.00	0.00	0.01
TN	mg/L	5.93	7.95	10
TP	mg/L	0.00	0.02	0.03

NEREUS DECISION SUPPORT TOOL

IMPLEMENTATION OF SEARCH ALGORITHM

- **1.** Main Stream Generation:
 - Candidate Unit Processes based on min-max concentration level of pre-selected compounds
 - **Unit Process Selection** : weighted-sum of multi-criteria
 - Effluent (Product) Quality Control: Final concentration <= Regulation limit based on country & product</p>
- 2. Side Stream Selection: higher Mass Balances
 - **Unit Process Selection** based on higher resource recovery percentage
- **3.** Evaluation of each Criteria
- 4. Overall Weighted Criteria Calculation

USER INTERFACE

Policy Maker Input T	echnology Expert Input						
Policy Maker Input	Step 1 : Site Details			Policy Maker Input	Technology Expert Input		
Site Details	Country Name Population Equivalent	Netherlands - 400000.0		Policy Maker Input	Step 3 : Resource	s Recovered	
Resources Recovered	O			Site Details	Select Energy Select Nutrients	Biogas • Phosphorus	· ·
Criteria Weighting		Run St	ustainability Impact .	Resources Recovered		Nitrogen	
				Criteria Weighting			Run Sustainability Impact
Policy Maker Input Tec	hnology Expert Input			Policy Maker Input	Technology Expert Input		
Policy Maker Input	Step 2 : Influent Chara	cteristics		Policy Maker Input	Step 4 : Criteria We	ighting	
Site Details	Info	Flow	Action	Site Details	Main Criteria Weight	ing	
Influent Characteristics	Gray	9000.0	Delete	Influent Characteristics	Economic		
Resources Recovered	Add Stream			Resources Recovered	25 Environmental		
				Criteria Weighting	25		
Criteria Weighting					Social		
		R	un Sustainability Impact		Technical		
					25		

Run Sustainability Impact

USER INTERFACE

Home User Manual Knowledge Library User Input Sustainability Impact Analysis Feedback FAQ

Sustainability Impact Analysis Output	Treatment Trains and Sustainability Impacts Treatment Train for Recovery Treatment Train for Discharge
User Input Summary	Recovery Treatment Train Economic impact Environmental impact Social impact
Treatment Trains and Sustainability	Technical impact Product recovery percentage Final Concentration
Print Result	Recovery treatment train Show recovery treatment train
	0 G

Resource recovery option

IWA SG on Modelling and Integrated Assessment

CONCLUSIONS & FUTURE WORK

- NEREUS web-based DST generate wastewater resource recovery trains via dynamic customized heuristic
- Economic, environmental, social and technical dimensions simultaneously considered and evaluated in the DST
- For future improvements:
 - Integration of LCA
 - Fine-tuning in search algorithm
 - Further validation of findings

THANK YOU

This project has received funding from the Interreg 2 Seas programme 2014-2020 co-funded by the European Regional Development Fund under subsidy contract No 2S03-011

Dr Seda Sucu, University of Portsmouth seda.sucu@port.ac.uk

AGENDA AND HOUSEKEEPING

Speaker 1 Timothy Holloway (University of Portsmouth, UK)

Speaker 2

Guangtao Fu (University of Exeter, UK)

Speaker 3

Seda Sucu (University of Portsmouth, UK)

Q&A Session moderator: Maria

Molinos-Senante (Universidad Católica de Chile)

- This session is being recorded;
- Microphones and cameras have been disabled due to the large number of attendees;
- The normal chat function is disabled;
- Please put any questions and comments you may have in the Q&A and we will do our best to answer them during the session (in writing or orally).

Great thanks to all presenters for a wonderful show!

Look out for MIA's NEXT webinar on November 22, 2021: "Anaerobic Digestion Modelling – Quo Vadis?" (working title)

If you have ideas for your own future webinar then contact MIA MC and we will help you make it happen!

Find out more at

http://iwa-mia.org/

https://iwa-connect.org