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MODELLING AND INTEGRATED ASSESSMENT
SPECIALIST GROUP (MIA SG)

institutions and operators to think along the use of models and DA o oo

“This group targets people from research, consulting companies,

computing tools to support the understanding, management —=

and optimization of water systems.”

Website: http://iwa-mia.org/
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= Interact with other IWA SGs and other professional organizations
= Organize specialized conferences, sessions and workshops
» Engage and activate YWPs in the domain.

& specialist group \ R
Winwtegram{ eSS

CURRENTLY 1900 MEMBERS https://iwa-connect.or
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MIA SG: ACTIVITIES

Task Groups (TGs) Working Groups (WGs) Conferences / Events

= Benchmarking of Control » |ntegrated Urban Water = WRRmod
Strategies for WWTPs (BSM) Systems (IUWS)
AND Good Modelling Practice | _ = Watermatex
(GMP) AND Design and . Compu.tatlonal Fluid
Operations Uncertainty (DOUT) Dynamics (CFD)

(All three finished) = Good Modelling Practice

= Generalised Physicochemical (GMP)
Modelling (PCM) (almost done)

= Use of Modelling for Minimizing

Guidelines for Benchmarking of Uncertainty in

Control Strategies The Use of Water Quality Wastewater Treatment
D B

for Wastewater and Process Models Design and Operation

Treatment Plants Addressing Current Practice

GHG Emissions from Using Activated
Sludge Models

for Minimizing Wastewater Utility

Wastewater Systems (GHG)
(almost done)

Greenhouse Gas Footprints

= Membrane Bioreactor Modelling
and Control (MBR)

= Good Modelling Practice in STR STR STR STR

Water Resource Recovery (Sept. 2012) (Sept. 2014) (2022) (2022)
Systems
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MIA SG: UPCOMING CONFERENCES

8th Water Resource Recovery Modelling seminar
(WRRmod2022+)

= Location: Stellenbosch, South Africa, 15-18 January
2023

= Chair: Dr. David Ikumi (Univ. Cape Town)

11th Symposium on Modelling and Integrated
Assessment (Watermatex2023)

= Location: Québec City, Canada, late summer 2023

= Chair/vice-chair: Prof. Peter Vanrolleghem (Univ.
Laval)/Dr. Elena Torfs (Univ. Ghent)

9th Water Resource Recovery Modelling seminar
(WRRmod2024), Stowe, Vermont, USA
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FIND MIA SG ON SOCIAL MEDIA

Follow the Modelling and Integrated Assessment Specialist Group on:

mc t https://iwa-connect.org/group/modelling-
0 n n e c and-integrated-assessment-mia/timeline

https://www.linkedin.com/company/iwa-
mia-specialist-group-on-modelling-and-
integrated-assessment

, https://twitter.com/iwa_mia_sg

— MIA SG open web site http://iwa-mia.org

to get informed about our latest events, publications and news!

MIA Open Group meeting at WWC&E2022, Copenhagen, Denmark
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Modeling Mixed Culture
Fermentations

A short introduction

Robbert Kleerebezem (R.Kleerebezem@tudelft.nl)
Delft University of Technology



Modeling Wild
Fermentations

A short introduction



WHY MIXED CULTURE FERMENTATION (MCF)?

Produce building blocks for other processes
Substrate: Carbohydrates, Glycerol...
Products: Acetate, Propionate, Butyrate, Ethanol, Lactate, Hydrogen...

Methanogenic digestion

Biohydrogen

Bioethanol

(Poly)lactate (PLA)

Polyhydroxyalkanoate (PHA)

IWA SGs on Modelling and Integrated Assessment




WHY MCF IS INTERESTING?

Thermodynamics drive microbial conversions:
The environment selects for maximization of energy harvesting

CH,0 - 0.5-CH, + 0.5 - CO,

NH'+2-0, > NO3;*+2-H*!'+ H,0

IWA SGs on Modelling and Integrated Assessment 1



WHY MCF IS INTERESTING?

Thermodynamics drive microbial conversions:
The environment selects for maximization of energy harvesting

CH,0 - 0.5-CH, + 0.5-CO,
NHf'+2-0,-> NO;'+2-H*' + H,0

But what determines the end-product of carbohydrate fermentations?

—>cetate + 2 H, + CO,

—>propionate — H,

1/2 glucose »0.5 butyrate + H, + CO,

—P|actate

»ethanol + CO,
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ANAEROBIC CARBOHYDRATE FERMENTATION

Cabbage Potato peel
Sauerkraut Butyric acid
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HISTORY OF MODELLING MCF

Wat.Sei.Tech. Vol.15, Copenhagen, pp.209-232. 0273-1223/83 $0.00 + .50
Printed in Great Britain. Copyright © 1983 IAWPRC/Pergamon Press Ltd.

MATHEMATICAL MODELLING OF
THE ANAEROBIC DIGESTION
PROCESS: REGULATORY
MECHANISMS FOR THE FORMATION
OF SHORT-CHAIN VOLATILE ACIDS
FROM GLUCOSE

F. E. Mosey

Water Research Centre, Elder Way, Stevenage, Herts SG1 ITH, U.K.

ABSTRACT

A model of the anaerobic digestion process is presented which attempts to
explain the complex patterns of volatile acid production in the anaerobic
dicgestion nrocess. The hvdrogen—utilisineg methane bhacteria are identified as

IWA SGs on Modelling and Integrated Assessment 14



HISTORY OF MODELLING MCF

2H,
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Fig. 3. Relative rates of acid-formation at different
NAD*/NADH ratios as predicted by these rate equations

Fig. 2. Metabolic pathways inside acid-forming bacteria
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LECTURES OF TODAY!

= Alberte Regueira
Bioenergetic modelling for predicting the stoichiometry of AF

= Adam Kovalovszki

Inferring metabolic interactions from genome-scale data: anaerobic digestion
‘under the microscope’

= Matthew Scarborough

Guild-based metabolic modeling for deciphering anaerobic bioprocesses

IWA SGs on Modelling and Integrated Assessment 16



AGENDA AND HOUSEKEEPING

Speaker 1
Alberte Requeira (Universidade de
Santiago de Compostela, Spain)

Speaker 2
Adam Kovalovszki (Technical
University of Denmark)

Speaker 3
Matthew Scarborough (University of
Vermont, USA)

Q&A Session Moderator: Robbert

Kleerebezem (Delft University of
Technology, The Netherlands)

IWA SGs on Modelling and Integrated Assessment

This session is being recorded,;

Microphones and cameras have
been disabled due to the large
number of attendees;

The normal chat function is
disabled;

Please put any questions and
comments you may have in the
Q&A (icon to the low right in Zoom)
and we will do our best to answer
them during the session (in writing
or orally).




BIOENERGETIC MODELLING FOR
PREDICTING THE STOICHIOMETRY OF
ANAEROBIC FERMENTATION

Alberte Regueira (Alberte.RegueiraLopez@UGent.be)
Universidade de Santiago de Compostela

IWA SGs on Modelling and Integrated Assessment



B8 Group

Bioenergetic modelling for predicting the
stoichiometry of anaerobic fermentation

Alberte Regueira Lopez

CMET =

Center for Microbial Ecology and Technology SHF\/NIJRS”Y
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What are bioenergetic models?

Kinetic unstructured models

v Biomass is a black box

v Solve the macroscopic mass
balances

v' Variable selectivity is not addressed
g

dC:

d—t‘=D (cih —¢) +
C;

i T'max]'Ci_l_K]l'X

[EfSCroup CRENUS

Bioenergetic models

v Intracellular processes are modelled
v' Cell-environmental interactions

v' Their task is imited to predict the
process stoichiometry

UES
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The microbial community is modelled as an enzyme soup

Reality: Multiple species performing different or similar
metabolic functions

Model: One virtual species is able of performing all the metabolic
functions of the community

[EfSCroup CRENUS

UES
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One virtual microorganism does all the possible processes

Substrate(s @ Substrate(s)
/

—
.

Substrate tfransport

Active transport of products
Passive transport of products

LN

Energy conservation via
VAR proton morive force
t

~ Et } Ac Pop Bu .
NCI+H+ 7 w\ HA €=<-»HA

Substrate 4 Substrate 3 @

E®CGroup CREAIUS H+ U



Flux balance analysis to determine product selectivity

= FBA determines the metabolite flow throught the pathways of the metabolic network

= The flow distribution maximises a given objective (e.g. maximum growth rate)

Substrate 1

Acetat
e

[EfSCroup CRENUS

Propionat

e

Valerat
e

Substrate 2 Substrate 3

Acetat Butyrat Acetat i-butyrate  Ethanol
e e e I

UNe
25 e
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Microorganisms behave in an efficient way

A

ATP production from the substrafe is maximised — a’a

Pathway selection At = TRaNsPORT + TpmE T Tear

V=-0.2

—

H =7 | N
PHin \. Free difusion

Ac +H* oAcH |'  AcH o Ac+H-

!
L

Transport Proton translocations Catabolic ATP

[EfSCroup CRENUS

UES



Bioenergetic models are dynamic flux balance analysis models

%=D-(Cin—6)+r(z,6) -
J Intracellular conditions can
z(t)/ max rarp(C(D)) Maximise ATP production also vary
s.t. Tnapu(z) =0 NADH is conserved
g(z) <0
h(z) = 0 Environmental conditions

Model solution

Environmental conditions

Ui
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Bioenergetic models in literature

» Glucose
Rodriguez et al. (2006): First bioenergetic model
Zhang et al. (2013): Modifications on Rodriguez’'s model
Gonzdlez-Cabaleiro et al. (2015): State-of-the-art approach

= Protein
Regueira et al. (2020): First bioenergetic model for protein fermentation

= Protein and glucose cofermentation
Regueira et al. (2020): First bioenergetic model for co-fermentation

[EfSCroup CRENUS

UES



29

Bioenergetic models in literature

= Glucose
Rodriguez et al. (2006): First bioenergetic model
Zhang et al. (2013): Modifications on Rodriguez’'s model on electron carriers
Gonzdlez-Cabaleiro et al. (2015): State-of-the-art approach

= Protein
Regueira et al. (2020): First bioenergetic model for protein fermentation

= Protein and glucose cofermentation
Regueira et al. (2020): First bioenergetic model for co-fermentation

E®CGroup CREAIUS U
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GlUCOSe
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The model predicts a shift with pH

— 08
O
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. BU‘I’yrQ‘I'e Ace‘l'g‘l'e E‘l‘h(]nol Model results: Gonzdlez-Cabaleiro et al. (2015). PLoS ONE

Experimental results: Temudo et al. (2007). Biotechnol.
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The model was validated with experimental results
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Bioenergetic model for protein fermentation
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Enzyme sOu

e e 11 .

[EfSCroup CRENUS

= Amino acids interact and share
common metabolites (e.g. NADH)
and affect common processes (e.q.
VFA transport)

UES
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Predicted VFA yields from gelatine fermentation at pH 7

0.30 Gelatine
|
pH 7
%25 - D=0.1h
,20
(o))
?,1 5
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()
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The product spectrum is sensitive to pH

= Higher proton motive force energy available at low pH favours butyrate production

0.30

0.25

0.20

0.15

Yield (g VFA/g Prot)

0.10
0.05

0.00

[EfSCroup CRENUS

—
|
4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0

pH

m acetate m propionate m n-butyrate m i-butyrate m n-valerate m i-valerate U
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The model captures the tendencies observed with pH
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.

A

Glucose

Gelatine
(17 aminoacids)

Total concentration = 10 g/L
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Cofermentation is not just adding two mono-fermentations

P guun N ~y \
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\ AC n-But /

\\_’/

Cofermentation
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Changing operational conditions favour different VFA

Acetate Yie|d (g/gFeeding) n'BUtyrai.e Yield (g/gFeeding)

Glucose concentration Glucose concentration
10 9 8@l) 6 5 4 3 2 1 0

10 9 8(gt) 6 5 4 3 2 1 0
| | 1 |, 03 85 04
u o |
\ 7 8 0.35
0.25
Te, \/ : 7.5
0.3
7
0-2 0.25
- 6.5
e
N P 5 0.2
5.5 0.15
0.1
57 0.1
4.5
0.05 0.05
4
0O 1 2 3 4 5 6 7 8 9 10

ECroup CREIUS Protein concentration (g/L) Protein concentration U
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The model can explore the operational space

Glucose concentration
100% 50% 0%

0% 50% 100%

EMGroup CREIUS Protein concentration U
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Take home messages

= There are bioenergetic models available for predicting the fermentation stoichiometry
of glucose, protein and their cofermentation.

= The effect of main operational conditions (e.g. pH or substrate proportions) on process

selectivity is well captured by the model.

» These models have a direct use as early-stage design tools in the context of the

carboxylate platform:
= Select a (mixture of) waste streams to target a particular

VFA(s)
= Select the best pH for targeting a particular VFA(s)

E®CGroup CREAIUS U
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Microphones and cameras have
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The normal chat function is
disabled;

Please put any questions and
comments you may have in the
Q&A (icon to the low right in Zoom)
and we will do our best to answer
them during the session (in writing
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INFERRING METABOLIC INTERACTIONS
FROM GENOME-SCALE DATA:
ANAEROBIC DIGESTION ‘UNDER THE
MICROSCOPE’

Adam Kovalovszki (adko@env.dtu.dk)
DTU Environment -
Technical University of Denmark
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Focus points

U What is genome-scale metabolic modeling (GSMM)?

J Who’s who in the AD microbiome

] Microbial interactions in AD
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Phenotypes (what we “see”)

Metabolites > metabolomics

Proteins - Metaproteomics

Acetoclastic
Methanogen

MRNA - Metatranscriptomics

DNA - Metagenomics
(16S - taxonomy)

Hydrogenotrophic
methanoge,.,

Guilds (functions we assume)
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Abstract

Background: iMicroorganisms in bicgas reactors are essential for degradation of organic matter and methane pro-
duction. However, a comprehensive genome-centric comparison, including relevant metadata for each sample, is still
needed to identify the globally distributed biogas community members and serve as a reliable repository.

Results: Here, 134 publicly available metagenomes derived from different biogas reactors were used (o recover 16,
metagenome assermbled genomes (MAGs) representing difierent biogas bacterial and archacal species. All genomes
were estimaled 1o be >50% complele and nearly hall omplele with < 5% contamination. In most samples,
specialized microbial communities were established, while only a few Laxa were widespread among the different
reactor systems. Metabolic reconstruction of the MAGs enabled the prediction of functional traits related to biomass
degradation and methane production from waste biomass. An extensive evaluation of the replication index provided
an estimation of the growth dynamics for microbes involved in different steps of the food chain.

Conclusions: The outcome of this study highlights a high flexibility of the biogas microbiome, allowing it to modify
its composition and to adapt to the environmental conditions, including temperatures and a wide range of sub-
strates. Our findings enhance our mechanistic understanding of the Al microbiome and substantially extend the
existing repository of genomes. The established database represents a relevant resource for future studies related to
this engineered ecosystem.

Keywords: Anacrobic digestion, Metagenome-assembled genomes, Biogas, Microbial community structure,
Functional reconstruction

Background

Anacrobic cnvironments arc ubiquitous in the bio-
sphere. Some examples are the digestive tract of animals,
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environments play crucial roles in the degradation of
organic matter and in the global carbon cycle. The anaer-
obic digestion (AD) process has great socictal impor-
tance since it reduces our dependence on fossil fuels via
its ability to generate methane within engineered biore-
actors [1]. For these reasons, the AD process has been
widely established as an efficient metabolic route allow-
ing the conversion of organic wastes, agricultural res
dues and renewable primary products into energy and
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ARTIGLE INFO ABSTRAGT
Keywords: Anaerohic digestion is a key bialagical pracess for renewable energy, yet the mechanistic knowledge on its
Anacrobie digestionflux balance anslysds/ hidden microbial dynamics is still limited. The present work charted the interaction network in the anacrobic
genome scale metabolic models/microbial i mgunun ‘microbiome vig the full dmmumuhuu of puirwise iuteractions and the associated metabolice ex-

Ioractions/senewable crirgy ;

anges. "o this goal, a novel collection of

genome-scale metabolic models was built 10 represent the

ﬁmmml capabilities of bacteria and archaea species derived from genome.centric metagenomics. Dominant
microbes were shown to prefer murualistic, parasicic and commensalistic interacions over neurralism, amens-
alisin and competition, and are more likely 10 behave as mewabolile importers and profileers of the coexisience.
Addidonall, cateral hydrogen incton posiively iICEs microbione dyianics by promotin conmen-

salism over umensilisin, Finally
cansed by an incomplece ricarboxylic acid
conditions for the microtes, oserall suggesting strategies Lo increasing the biogas production clficics

y. exchanges of glucog wercome auotrophies
‘yele. Our novel stracegy predicred the most favourable. growth

. Tn
principle, this appreach could also be applisd 1o micrabial populations of biomedical importance, such as the gut
microbiorne, Lo ullow « broad inspection of the microbial interplays.

1. Introduction

Microorganisms play am important role in all fields of biological
relevance, ranging from human health (Clemente ot al, 2012) to
biotechnology (Lebuhn et al., 2015). In particular, diverse microbiomes
may have various responsibilities, from causing diseases to influencing
applied processes (e.g. biogas production) (Zhu el al.. 2020) or the
synthesis of polymeric substances (Chow et 4L, 2008). Microbial net-
works, however, are still poorly understood due to difficulties in
isolating most of the microbial species and o the helerogeneous nature
of their interactions (Muller et al., 2018). While the inspection of a core
microbiome might reveal which speeies arc the key players for a specific
process (Fiilh, 2015), The ole of rare members still remains 1o be
clarified (Joussel el al., 2017). Microbial cooperalion is exiremely
important for environmental niche colonization and completing com-
plex activities (Stolyar et al, 2007), which single species could not

* Corresponding author.
Ramal addpess: sefano.companaroGunind.it (S, Companaro).
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10.1016/1.ymben.20
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Available online & September 2020

pesform independently (11ay et L., 2004). This is the case in anaerobic
digestion (AD), which is a biotechnological process that produces a
polent renewable energy carvier called biogas (Veniekakis and Gouli
2017). During biogas production, when acetoclastic methanogenic
archaca are inhibited, a pivotal role is played by hydrogenotrophic
methanogenic archaea and syntrophic acetate oxidizing bacteria (Mos.
biel et L., 2016) (SAOB). An example is the mutualism between the
hydrogen-urilizing methanogen Medhanoculleus bowrgensis and the SAOB
schinkii, [Clostridium] ultunense, and
acetaioxydans (Weslerholm el al.. 2019). SAOB oxidise acetale 10
formare or to Hy and earbon dioxide (CO2). The bacteria rely on archaeal
activity, because idation rapidly hen 1l
accumulales (5lams and Plugge, 2009). Tndeed., subsequently Hy-util
ing methanogens convert these substrales to methane (CH) (Treu e1 al

2018).

Although direct microbial cultivation and phenotyping experiments

hr
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Final remarks

Vast search space (genes missing, or with unknown functions)

Experimenting is computationally and time-wise intensive (constraints, futile cycles, sinks)

GSMM: what could be and NOT what is - other omics to corroborate

Productivity vs survival - finding the balance

(Currently) unpredictable synergistic effects



Thank you for your attention!



References

Campanaro, S., Treu, L., Rodriguez-R, L. M., Kovalovszki, A., Ziels, R. M., Maus, I., Zhu, X., Kougias, P. G., Basile, A., Luo, G., Schltter, A.,
Konstantinidis, K. T., Angelidaki, I. (2020). New insights from the biogas microbiome by comprehensive genome-resolved metagenomics of
nearly 1600 species originating from multiple anaerobic digesters. Biotechnology for biofuels, 13(1), 1-18.

Basile, A., Campanaro, S., Kovalovszki, A., Zampieri, G., Rossi, A., Angelidaki, 1., Valle, G., Treu, L. (2020). Revealing metabolic mechanisms of interaction in
the anaerobic digestion microbiome by flux balance analysis. Metabolic Engineering, 62, 138-149.



GUILD-BASED METABOLIC
MODELING FOR DECIPHERING
ANAEROBIC BIOPROCESSES

Matthew Scarborough
(Matthew.Scarborough@uvm.edu)
University of Vermont

IWA SGs on Modelling and Integrated Assessment



Guild-based
metabolic
modeling for
deciphering
anaerobic
bioprocesses

Matthew Scarborough, P.E., Ph.D.
Department of Civil and Environmental
Engineering

College of Engineering and Mathematical
Sciences

The University of Vermont



Chain elongation from complex organic wastes

Primary
Complex Fermentation Carboxylic Acids
Substrates Monomers Products .
® o e
0]
o % ® 7 - AL
(0]

O ® ® PN

: Simple Chain
(_Hydrolysis ) Fermentation Elongation




A metabolic modeling primer

Metabolic Network Representation

— - T~
— 176 -~
/ ~

/ D A .
/ \_)
\ r5 s A ri B . )
. r%
\ BN cx2)’/
N 7
r7 _ -

) I
~
~_—’

pa
~




A metabolic modeling primer

Metabolic Network Representation

r1 r2 r3 r4

Al o1 |o
— - T =
-~ |6 I Bl 1|20 |~
/

\ C
v4

D | -1 0 0 0 1
\ > A r \2 N 0 0 s
r ) 6
\ AC (x2) ’

v7
\\ _ S
%___.-- V

Sev=0

"N

m
o
N
—_
—_
o
o
—_




glc_D glyc  xyl_D glc4 xyl4 lac_D etoh h2 for ac ppa but pta hxa hpta octa

vttt

glyc xyl__D glca xyl4 lac_D etoh h2 for ac ppa but pta hxa hpta octa

glc_D xyl_D
accoa*®

=4
| o]
’O

pta hpta
rgp 3 [ConTcs ] [Coric7]
DEE: accoa hptcoa

ks ppcoa G ptcoa
6|
P P [VCACT] 1 vcom [VcacTa] .

ptZCoa ht2coa

s

VECOAH] [VECOAR?

&3
ppcoa

o ’ 0 L ETO,

ppcoa u
Iac D pyr* accoa® PR Prcscri) 3502 [CoAtce ] [Ackce]
- btcoa accoa hxcoa
<
b2coa & @ hx2coa
[EC 12|

Iac

accoa*

octa
actp acald 3 ACHCS
icit O accoa* [AcHCs]
cit—-{ACT} N

.i QU occoa
malel glx o | E5rc03]

etoh akg* o 0O

f oc2coa
Umﬂ, O @
suce atp adp :

[ECOAHS3]

akg* oaa*g6p* g3p* 3pg* p(r* pep* accoa* e4p* r5p* so4* nh4* ooe
'm‘\ ~, ~,  Biomass

for ac fum

2h
h2 €8 "* h2
YDABC 8
; h2 26

= ST o S =

2hi 4h.i

Adapted from Scarborough, M, et. al. 2020. mSystems.




Simulating consumption of different substrates

" (A) Glucose - (B) Xylose

Electron Equiavlents (%)

: (C) Glycerol : (D) Lactate

i

g
wv
2
c
<
>
2
=]
o
i
c
]
S
b=
9]
<
fr

(]

E_V:I —o— . 1
i 1 1 1 1 1
N T N MO ¥ W

r O O O O O

Lactate ~ +

Biomass -
Lactate ~
Biomass ~

Products Products

Adapted from Scarborough, M, et. al. 2020. mSystems.




Simulating consumption of different substrates

Zg (E) Ethanol (F)H2+C02  —e-
70-

60 -

50~

40-

30-

20-

10-

O

Electron Equiavlents (%)

90-
. (G) Ethanol + Acetate (H) Lactate + Acetate

70-
60-
50-
40-
30-
20-
10~
0- == —

<
&
(%]
2
c
Qg
>
iy
=
o
L
c
o
S
=]
O
Q
[

t

N T N M X
r O O O O

Lactate -
Biomass -

Products Products

Adapted from Scarborough, M, et. al. 2020. mSystems.




Simulating consumption of co-substrates
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Substrates Xylans Glucans Glycerol Glucose

Predicting the
flow of carbon
and electrons

I_IIII_IIIII"IIIIIH&

[Intermediates

Products 800

: Acetate Butyrate Hexanoate Biomass
Ethanol (2%) Octanoate (3%)

Adapted from Scarborough, M, et. al. 2020. mSystems.




Predicted differences in sugar and lactate conversion
(A)

glc_D xyl_D glyc lac_ D ac h2 hxa octa

i
ML 1.204 JilK 0.326 M [ 0. 1 - Hil [ 0.461 Jilliliil 0.034 }
|

Y
-
©
7
s

0.461
hxcoa----_ hxa
fdred ™,

0.034
occoa

fdred
PFOR

1.753 2 nadh
co2

2hi b 2h_i

Adapted from Scarborough, M, et. al. 2020. mSystems.



Predicted differences in sugar and lactate conversion

P A bt i
he]

~-nadh
-atp

lac_D ac but

{ 6.638 il

accoa.

accoa
‘\ I,
Y

co2 /
fdred
nadh™~+

Adapted from Scarborough, M, et. al. 2020. mSystems.



Predicted differences in sugar and lactate conversion

(A)

glc._D xyII_D glyc | ac h2 hxa octa

accoa..  accoa  btcoa------------- /!

N ¢ hxcoa----._
fdred ™,

hxa

2 nadh 1

(B)

~ ~ \H v
@D pyr {PFOR [ accoa ac i
1.753 1.178 nadh™"+}

lac_D 0.

1.751

co2

h2 fdred

fdred +-nadh fgozd
"~atp re

2h H

lac_D pyr—{ PFOR [— accoa

6.670 6.650

2h.i 4hi

Adapted from Scarborough, M, et. al. 2020. mSystems.



Hypotheses from modeling

* MCFAs are produced from sugars but not lactate
Lactate and acetate are used to produce butyrate

Lactate consumption occurs via an electron-confurcating lactate
dehydrogenase

SEOs and LEOs vary in their routes of hydrogen production
SEOs and LEOs vary in terminal enzymes for chain elongation




Conclusions

* Metabolic models are...

» Auseful tool to augment multi-omic techniques

» Diagnostic tools to refine hypotheses

« A great approach for thinking about chain elongation
* Predictive models will likely require...

* Further understanding of chain elongator metabolism

* Quantification of toxic effects of end-products
« Enzyme-level kinetic analyses of different product lengths



Thanks!

mscarbor@uvm.edu

github.com/mscarbor/Mixed-Culture-Fermentation-Models



AGENDA AND HOUSEKEEPING

Speaker 1
Alberte Requeira (Universidade de
Santiago de Compostela, Spain)

Speaker 2
Adam Kovalovszki (Technical
University of Denmark)

Speaker 3
Matthew Scarborough (University of
Vermont, USA)

Q&A Session Moderator: Robbert

Kleerebezem (Delft University of
Technology, The Netherlands)

IWA SGs on Modelling and Integrated Assessment

This session is being recorded,;

Microphones and cameras have
been disabled due to the large
number of attendees;

The normal chat function is
disabled;

Please put any questions and
comments you may have in the
Q&A (icon to the low right in Zoom)
and we will do our best to answer
them during the session (in writing
or orally).




CLOSING REMARKS

Great thanks to all presenters for a wonderful show!

Look out for MIA's NEXT webinar in May 2022:
“Topic to be decided”

If you have ideas for your own future webinar then contact
MIA MC and we will help you make it happen!

IWA SGs on Modelling and Integrated Assessment
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