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MODELING IN THE WATER SECTOR

First-Principles Models
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MODELING IN THE WATER SECTOR

Semi-Empirical Models ——— Mechanistic
Initial State Models (e.g., ASMs)
)
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flow) 1 (e.g., reaction rates)
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(e.g., growth rates)
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MECHANISTIC MODELS

Gold standards in our field

Model cause — effect relationships

Max. Specific Half-Saturation
i — : Growth Rate Coefficient
= Can answer “what-if’ questions \ e
= \Work tside historical biomass growth = phth( So )(‘lss )( Snu )( Sarx )
OrkKs outside nistorical range Ko + So/ \Ks + Ss/ \Knu + S/ \Kark + SaLk
Biomass Oxygen Substrate NutI'ient Alkalinity
Cause 1 ) Formula m—) [ffect 1
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MECHANISTIC MODELS

Conditional trust and confidence:
* No Unknown or poorly understood relationships
« Parameters are accurate and (somewhat) fixed over time

« Same formulas will hold at all conditions

Infiuent Primary clanfier

@Ns
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WHY DO WE BUILD MODELS? - t+At

System States u(t)

—  Outputs u(t)

1 , !

Influent Monitoring & Planning &
Generator Understanding Decision Support

Inputsu(t) ——
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WHY DO WE BUILD MODELS? ottt

System States u(t)

—  Outputs u(t)

1 , 1

Inputsu(t) ——

Process
Resource Asset Health & ..
: . Optimization &
Planning Maintenance
\ Control
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WHY DO WE BUILD MODELS?

4 N
Process Process Planning and
Monitoring & Optimization & Decision
Understanding Control Support
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Maintenance 9
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UTILIZING THE POWER OF DATA

Artificial Intelligence

-

Natural Language Computer
Processing Vision

@ 9,9

ChatGPT

-

Machine Learning

Robotics

\

Speech

Recognition

@

Hey Siri /
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UTILIZING THE POWER OF DATA: MACHINE LEARNING
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UTILIZING THE POWER OF DATA
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Function Approximation - Model Complexity: degree 1
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UTILIZING THE POWER OF DATA

Function Approximation - Model Complexity: degree 4
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UTILIZING THE POWER OF DATA

Input
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UTILIZING THE POWER OF DATA

Input
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Function Approximation - Model Complexity: degree 16
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INTRODUCTION TO CHALLENGES

® Data-driven = Semi-Empirical

Physical Knowledge
Embedded

Interpretability

Extrapolation

Data Dependence

Deployment Readiness
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EXAMPLE: N2O EMISSIONS MODELING

0 . =
Aerated
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Secondary settlers
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" du— Selector
. =
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noxic ?
S

Return

Sludge
Location  Probe Primary
1 NHz-N, NO=-N, DO Settler
2 DO1, TSS
3 DO2, Temperature
4 ' DO3, NHa-N, NOs-N,NO2-N
4* DO3, NHa-N, NO3-N
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EXAMPLE: N2O EMISSIONS MODELING
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ALIGNMENT WITH DOMAIN KNOWLEDGE

Model Complexity (number of trees)
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ALIGNMENT WITH DOMAIN KNOWLEDGE

DO Measurement Locations
N 1)

What features are the most important ,

for the model to make prediction?

NO; -N TEMP
TEMP . DO3
Remove NO: from input =
NO; -N
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NH; - N
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TSS
TSS
DO2
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DO1 DO1
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Permutation feature importance Permutation feature importance
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INTERPRETABILITY OF MODEL PREDICTIONS
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This is not a causal effect!
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ADVANCING TOWARDS DECISION SUPPORT

Interpretability # Causality

. = Counterfactuals

(A

= Interventions

A

@ Local Interpretability

@ Global Interpretability
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THE CAUSALITY PROBLEM

e Correlation can be misleading when
an unmeasured factor (confounder)
influences both variables

* P (N20 | DO): What we observe in
the data (correlation)

* P(N20 | do(DO) = d): What would
happen if we intervene on DO
(causal effect)

ML models can easily learn correlations
but extracting causation requires extra work
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EXAMPLE: RO MEMBRANE FOULING FORECASTING

Water quality:
temperature, conductivity,...

|

4 ModelPredictiveCoTrol 3

Optimizer
’{ data-drlvtI fouling }

model

Vs
setpoint

recovery

Objective function:
minimize fouling,
maximize recovery
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EXAMPLE: RO MEMBRANE FOULING FORECASTING

Last 6 days
Conductivity 4 hours into the
future
Temperature
I Fouling
Recovery
Pressure
Rm forecasting on valid range
1.4 4
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0.4 - —— valid Rm data
—— LSTM forecast Rm
2023-04«2‘8 13:15:00 2023-08-0;1 17:15:00
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EXAMPLE: RO MEMBRANE FOULING FORECASTING

Feature Importance

This is the
control variable
in the MPC

4

Press _feed Emp Recovery

g
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]
N

Importance (RMSE difference)
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Previous Resistance Conduc_feed

Features
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EXAMPLE: RO MEMBRANE FOULING FORECASTING

Reconstructed Rm on valid range

—— Valid Rm data
—— Reconstructed Rm with ARm forecast

2023-04-28 13:30:00
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EXAMPLE: RO MEMBRANE FOULING FORECASTING

Reconstructed Rm on zoomed range

—— Valid Rm data
——— Reconstructed Rm with ARm forecast

0.64 4

0.62 1

Y/
: / VA 4 \("w/\

Rm

0.56 1

0.54 +

2023-054'9 09:30:00 2023-05—2'2 09:15:00

Predicting the change in fouling makes the model learn system dynamics directly,
eliminating lag and improving responsiveness.

IWA SG on Modelling and Integrated Assessment

28



EXAMPLE: RO MEMBRANE FOULING FORECASTING

Even for a powerful model, forecasting Rm directly made it slower to react to sudden

changes (e.g., frequent on — off)

Predictions were lagged during fast transitions

ARm prediction is simpler as it removed slow trends and noise (stationary signal)

Final Rm is reconstructed by adding predicted ARm, leading to better accuracy
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KEY TAKEAWAYS! Thank you!

= Data-driven methods expand our modeling toolbox — they don’t replace physics or

expertise

= ML is powerful but could be fragile: performance depends more on data and context than

on algorithms
= Accuracy can be misleading: a good fit does not mean the model is correct

= ML is not magic. It introduces new challenges (drift, retraining, explainability) that must be

managed deliberately

= A model can look right and be wrong. Accuracy is not the whole story
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