

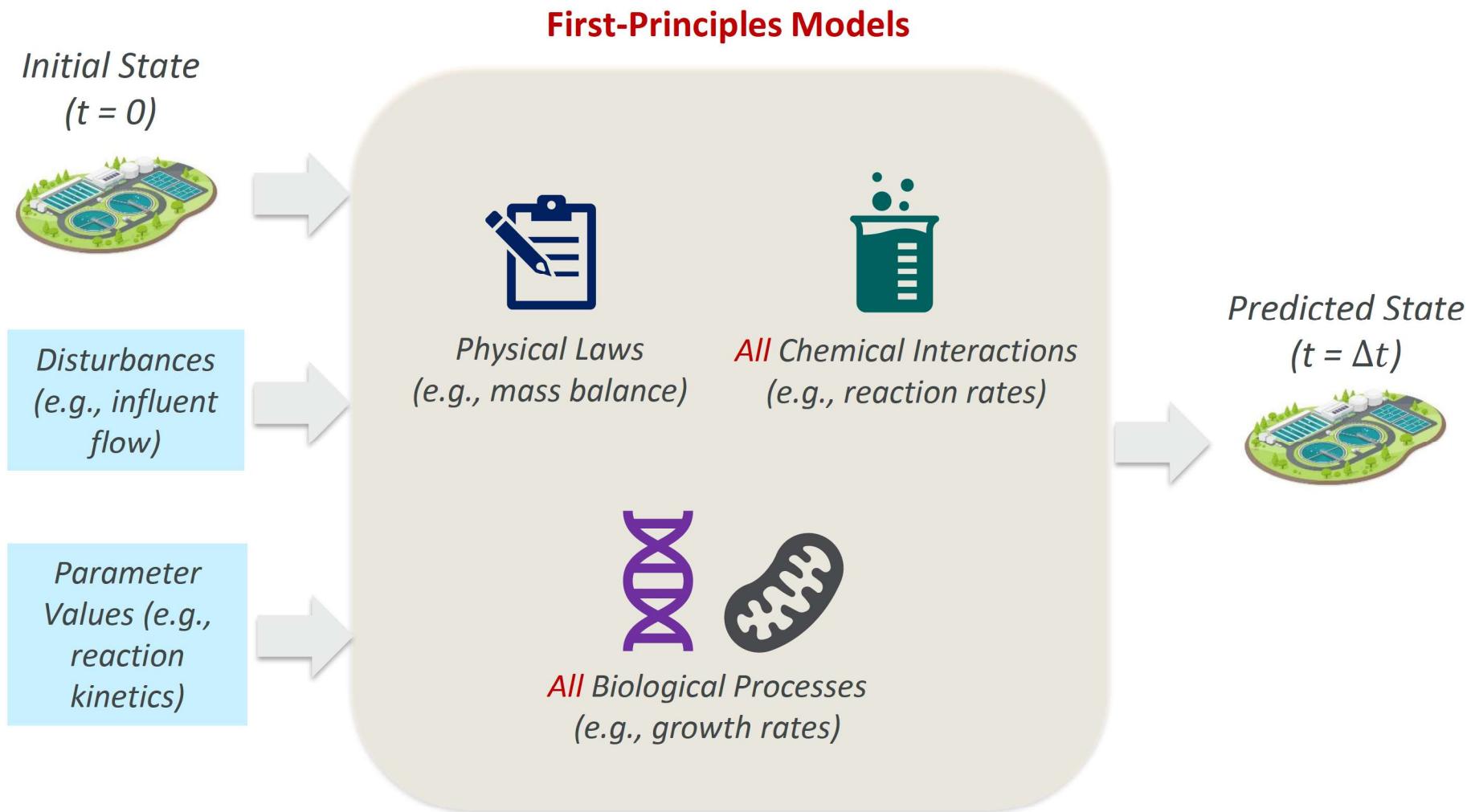
DATA-DRIVEN MODELING IN THE WATER SECTOR: A PARADIGM SHIFT IN PREDICTIVE METHODS

Mostafa Khalil, PhD

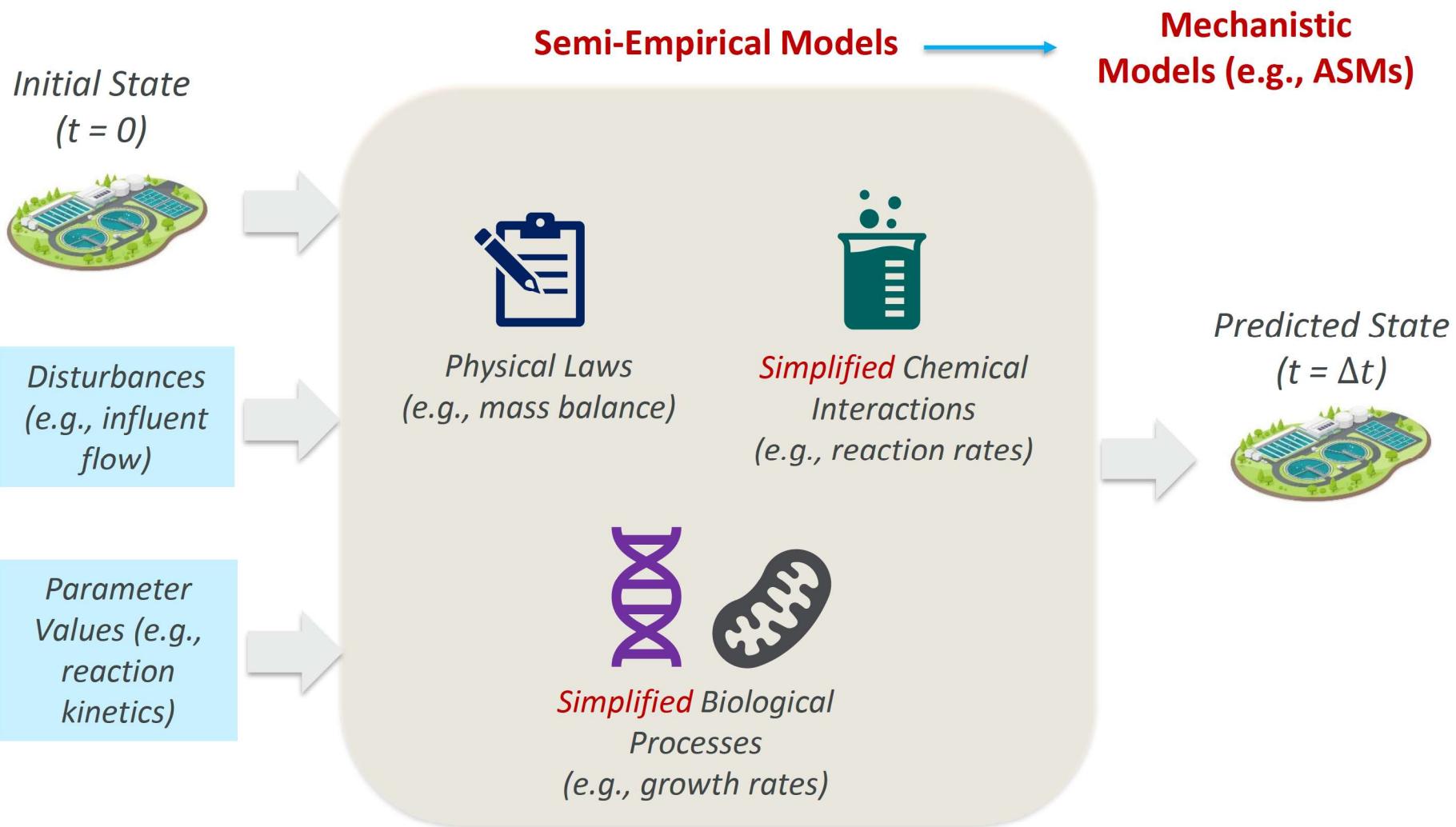
Data Scientist | Innovation Engineer, Stantec

Views are my own

MODELING IN THE WATER SECTOR



MODELING IN THE WATER SECTOR



MECHANISTIC MODELS

- Gold standards in our field
- Model cause – effect relationships
- Can answer “what-if” questions
- Works outside historical range

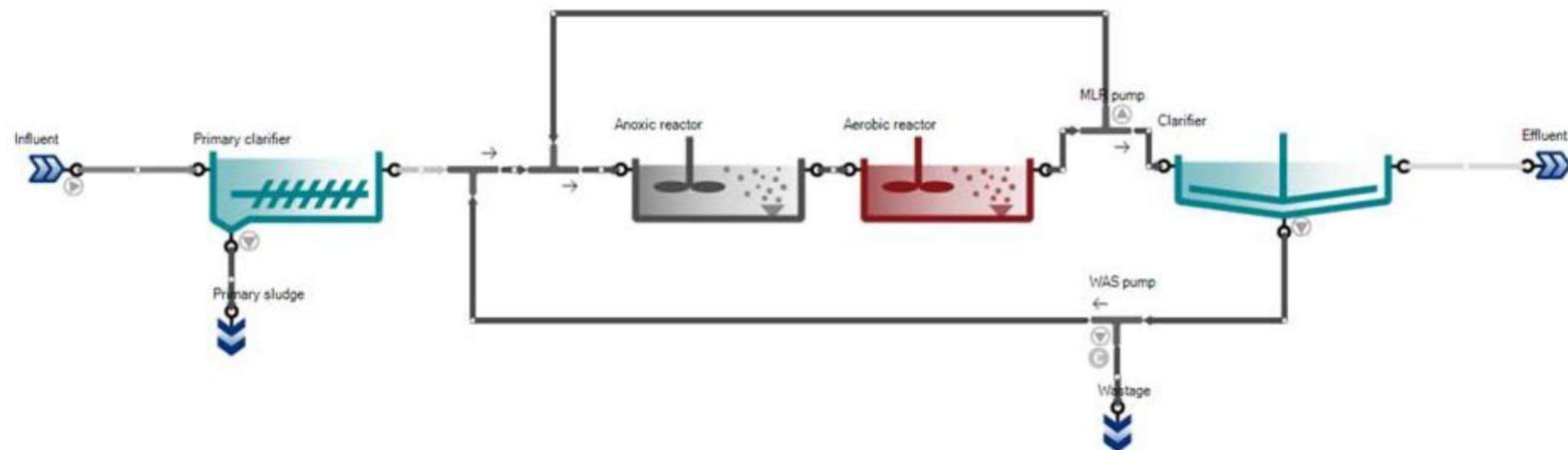
$$\text{biomass growth} = \mu_h X_{bh} \left(\frac{S_0}{K_0 + S_0} \right) \left(\frac{S_S}{K_S + S_S} \right) \left(\frac{S_{NH}}{K_{NH} + S_{NH}} \right) \left(\frac{S_{ALK}}{K_{ALK} + S_{ALK}} \right)$$

Max. Specific Growth Rate
Half-Saturation Coefficient
Biomass Oxygen Substrate Nutrient Alkalinity

MECHANISTIC MODELS

Conditional trust and confidence:

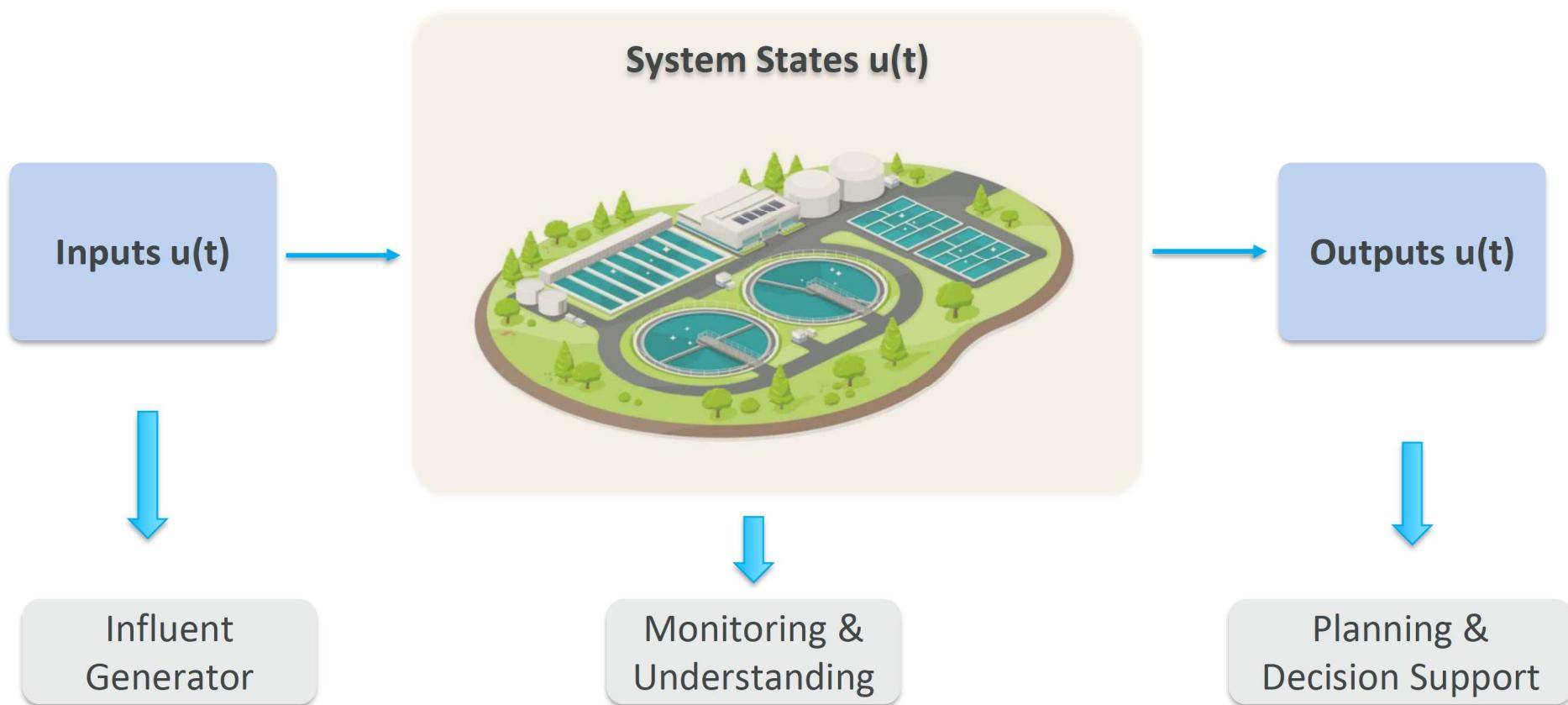
- No Unknown or poorly understood relationships
- Parameters are accurate and (somewhat) fixed over time
- Same formulas will hold at all conditions



WHY DO WE BUILD MODELS?

t

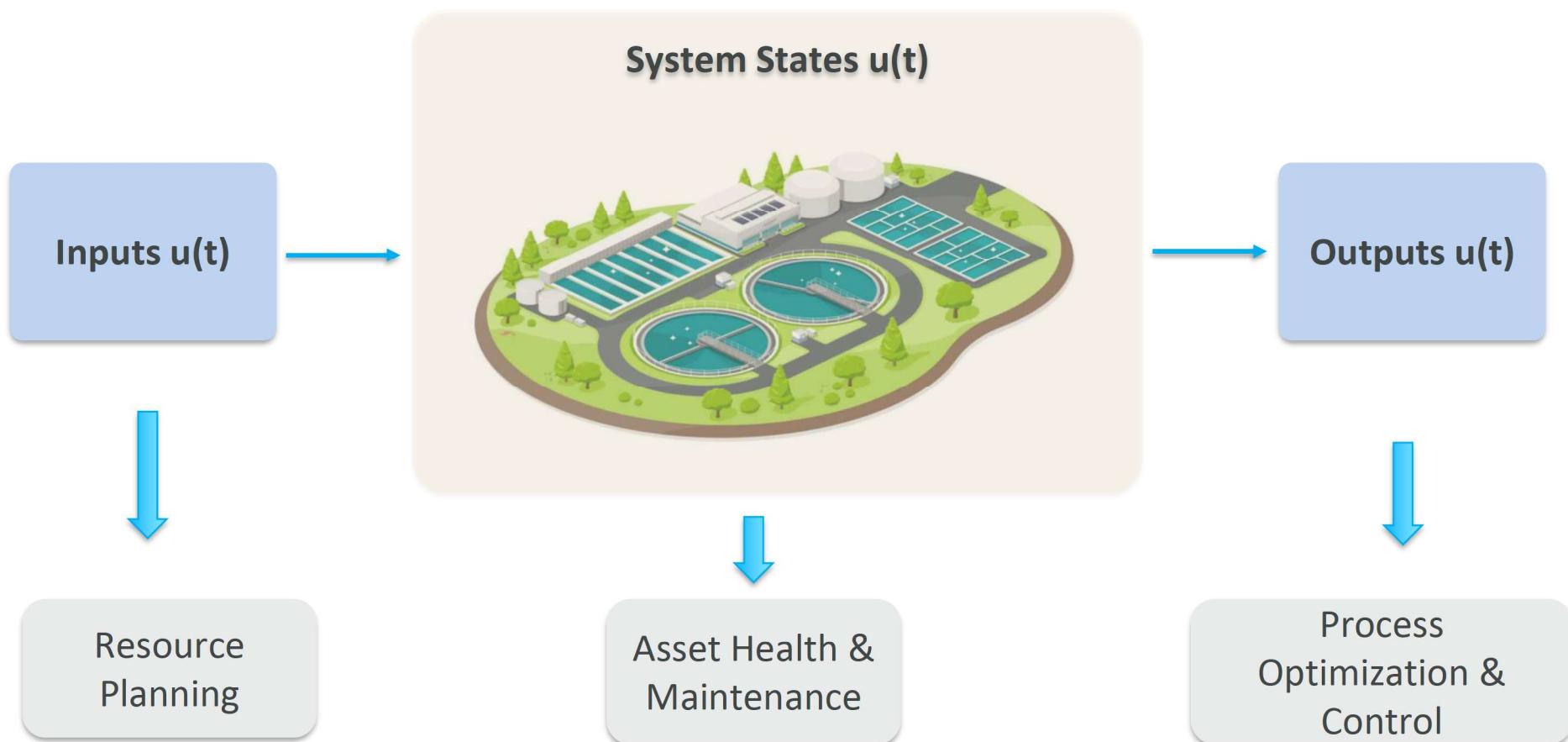
$t + \Delta t$



WHY DO WE BUILD MODELS?

t

$t + \Delta t$



WHY DO WE BUILD MODELS?

Process
Monitoring &
Understanding

Process
Optimization &
Control

Planning and
Decision
Support

Asset Health &
Maintenance

Forecasting

UTILIZING THE POWER OF DATA

Artificial Intelligence

Machine Learning

Natural Language Processing

ChatGPT

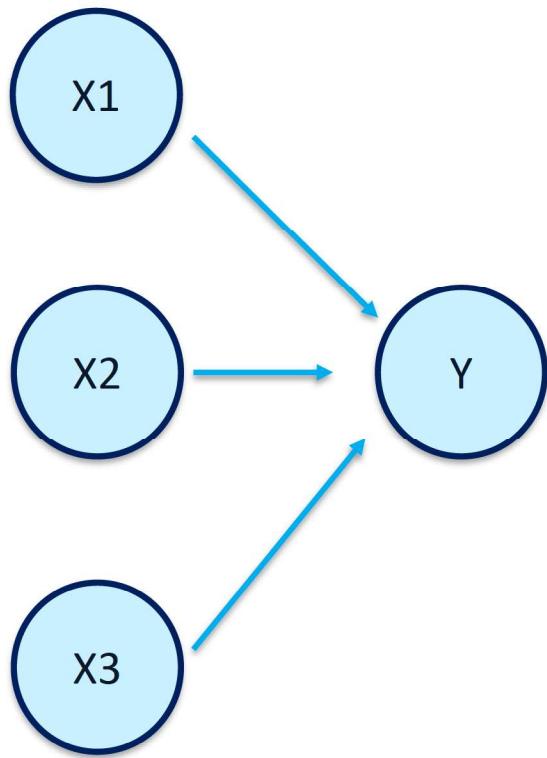
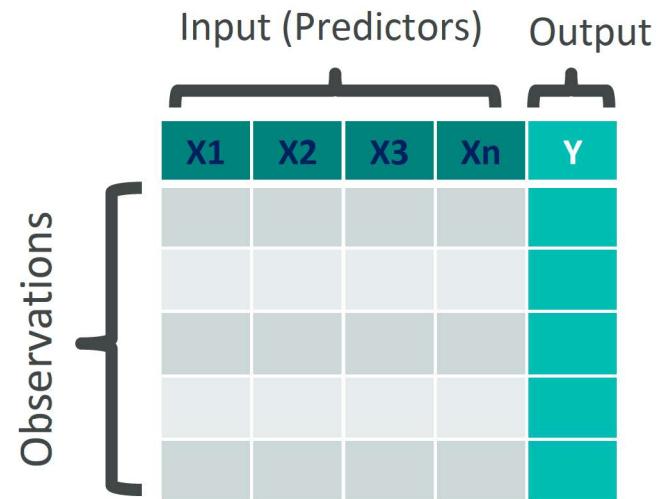
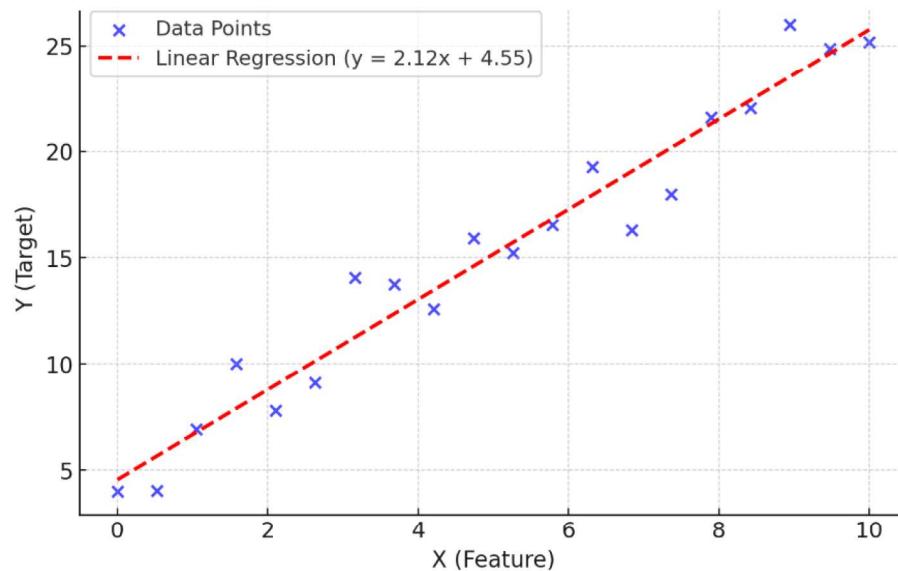
Computer Vision

Robotics

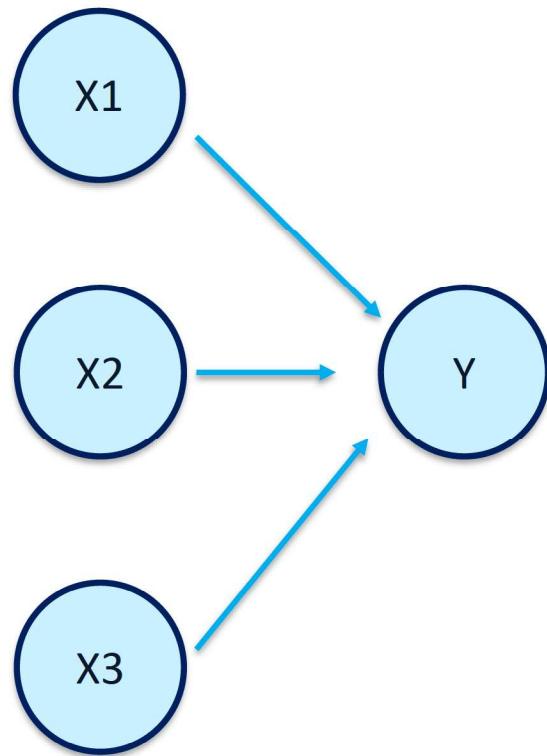
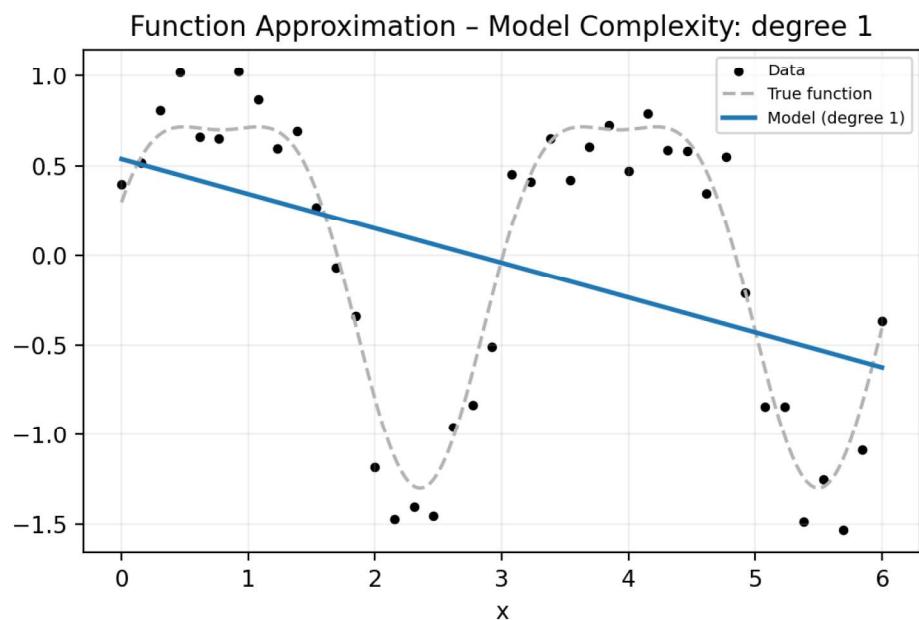
Speech Recognition

Hey Siri

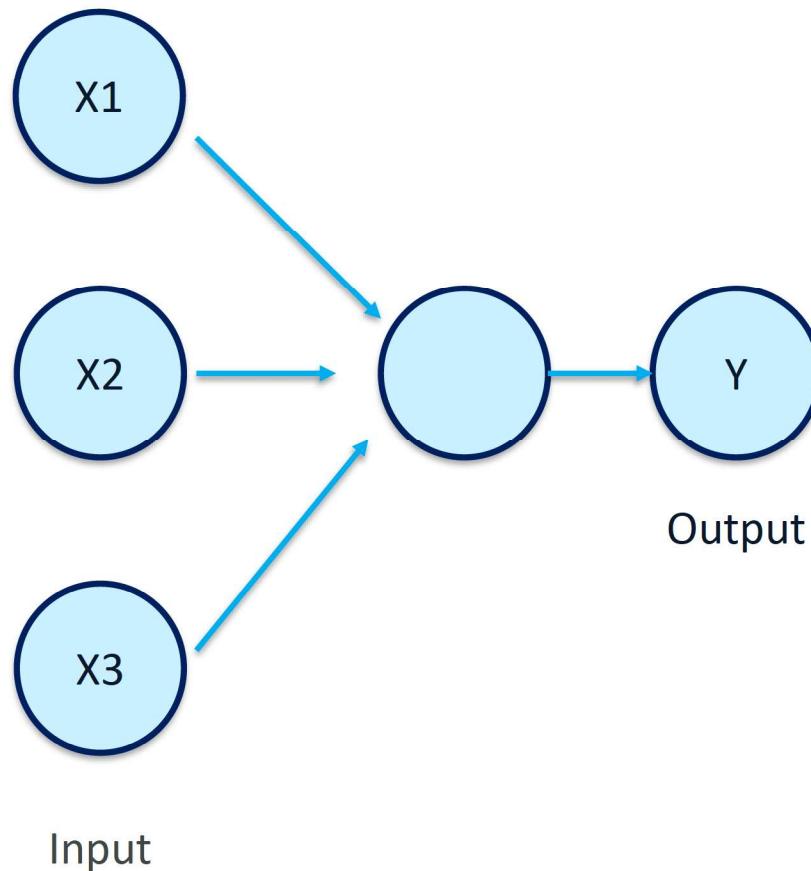
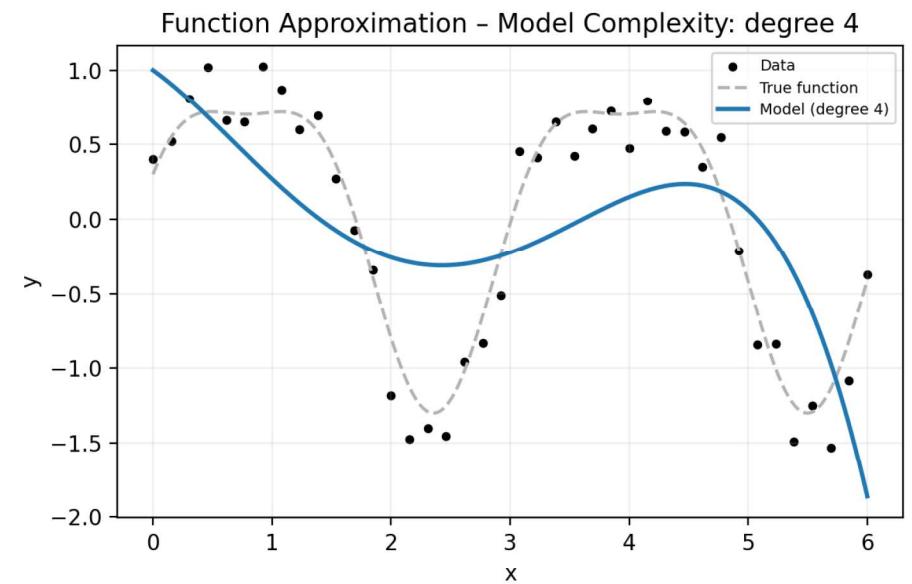
UTILIZING THE POWER OF DATA: MACHINE LEARNING



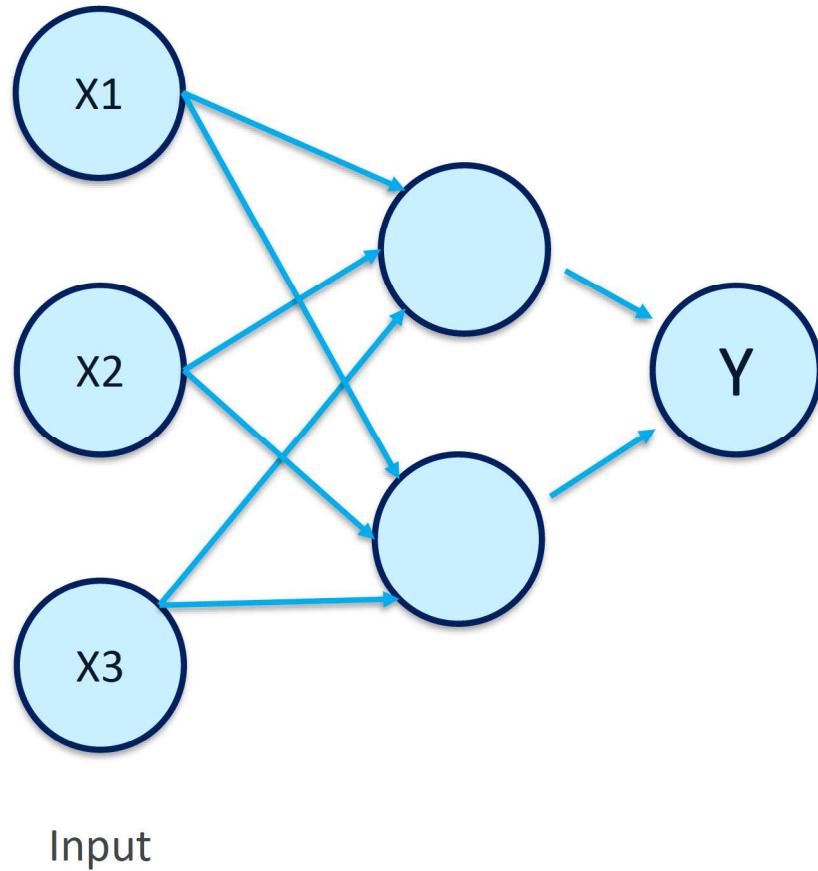
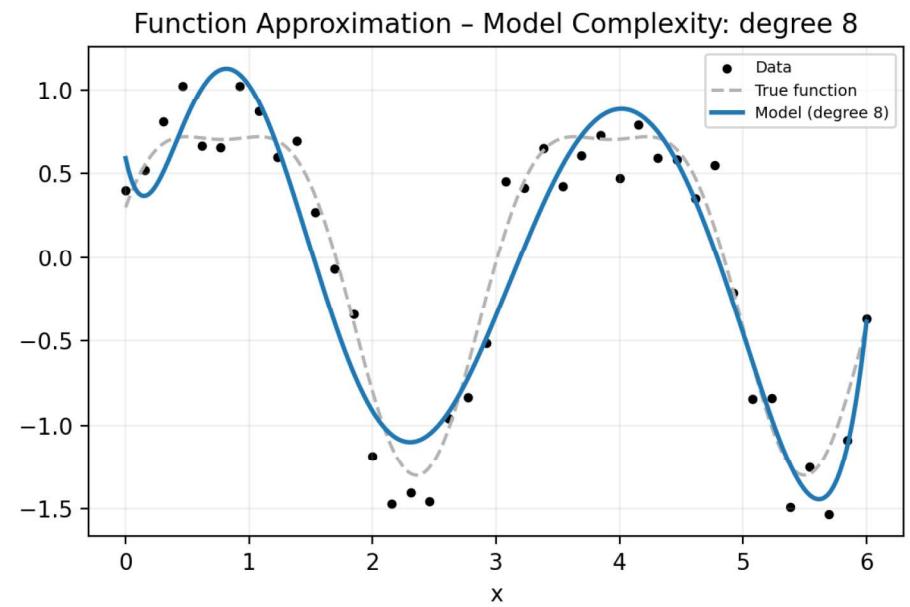
UTILIZING THE POWER OF DATA



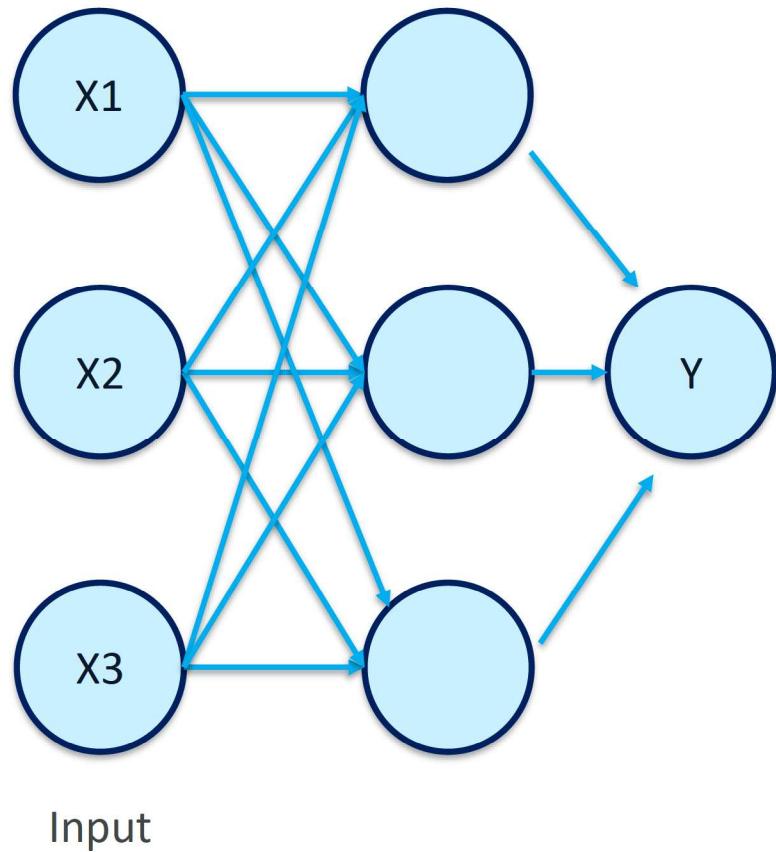
UTILIZING THE POWER OF DATA



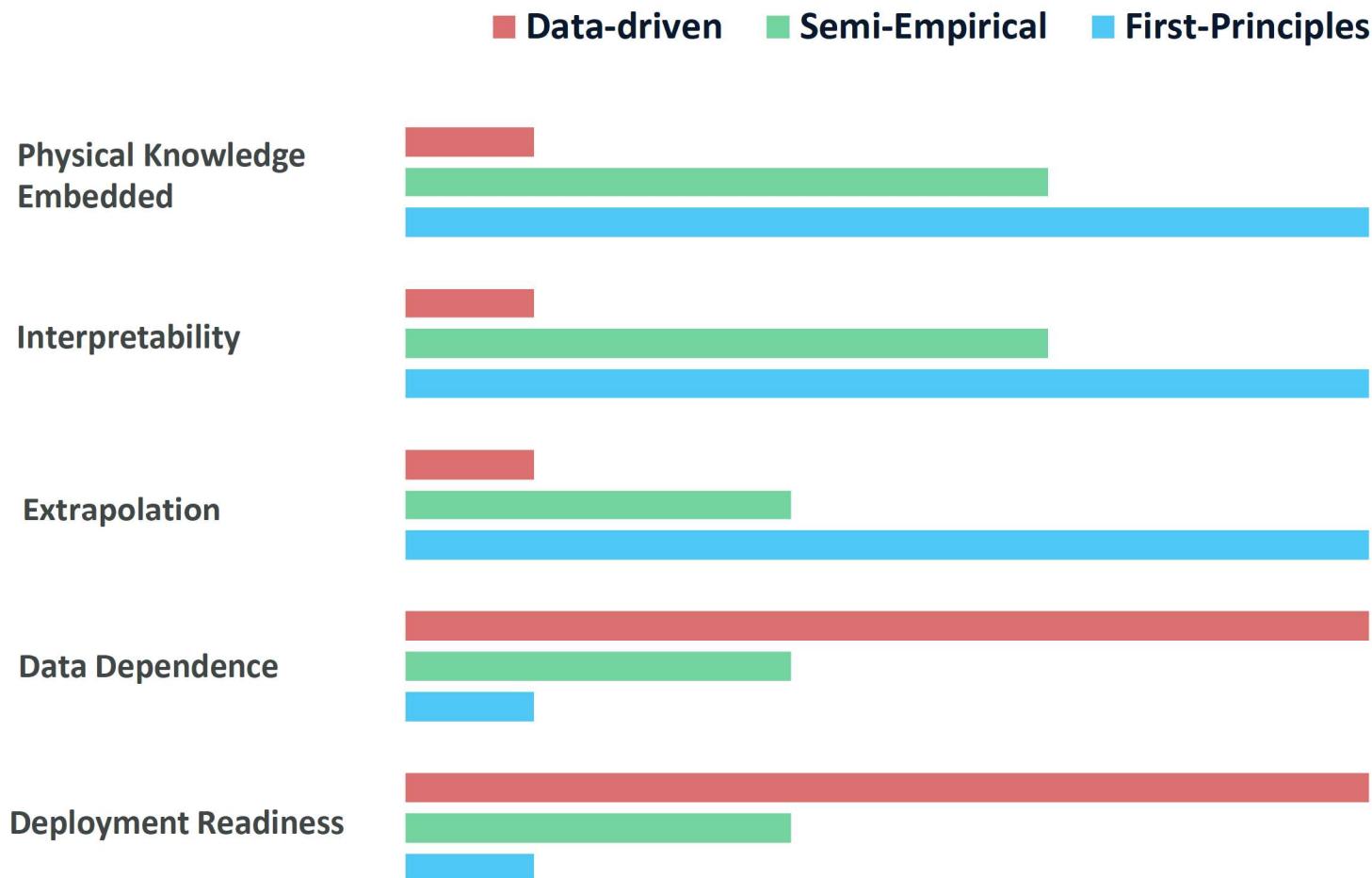
UTILIZING THE POWER OF DATA



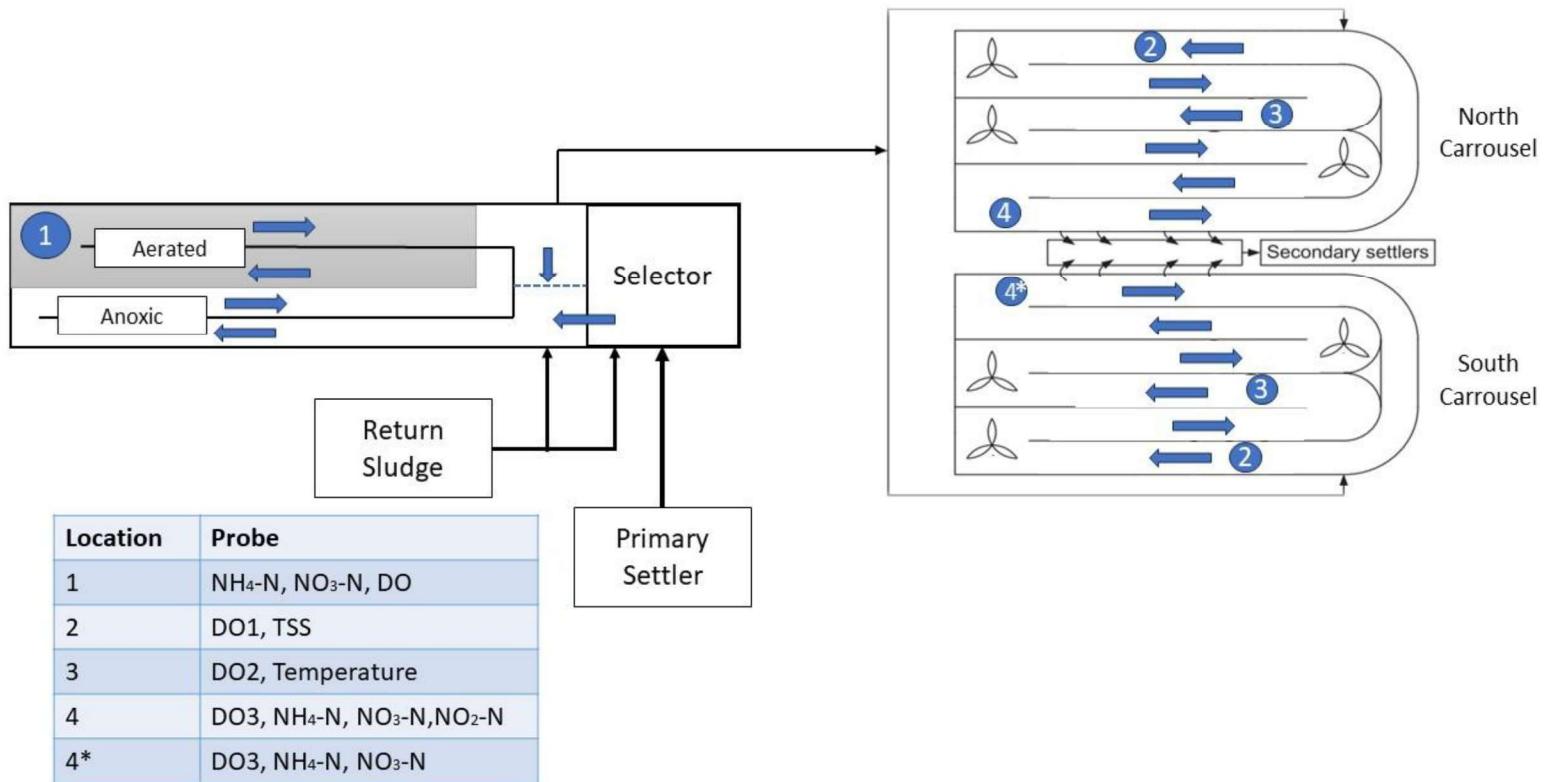
UTILIZING THE POWER OF DATA



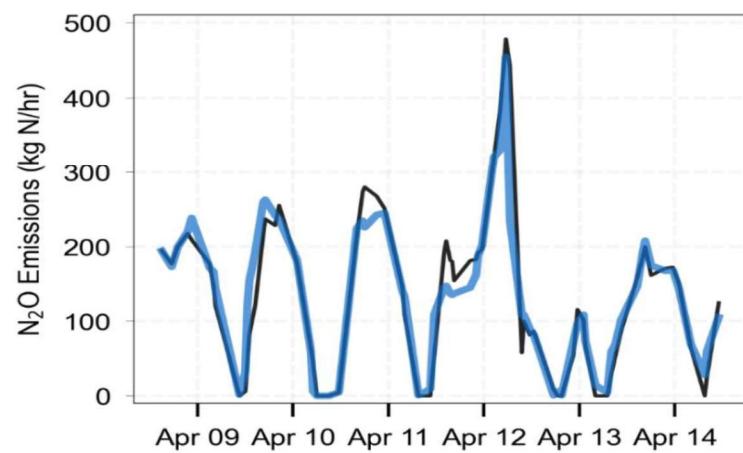
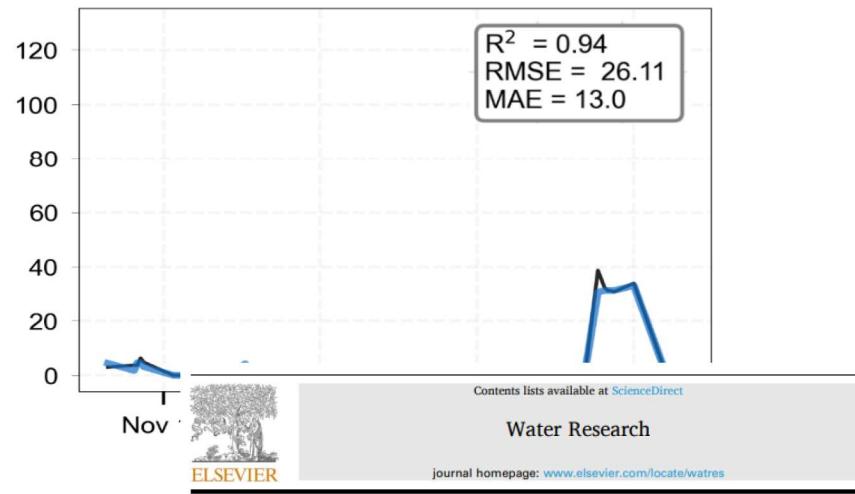
INTRODUCTION TO CHALLENGES



EXAMPLE: N₂O EMISSIONS MODELING



EXAMPLE: N₂O EMISSIONS MODELING



Machine learning for modeling N₂O emissions from wastewater treatment plants: Aligning model performance, complexity, and interpretability

Mostafa Khalil ^a, Ahmed AlSayed ^b, Yang Liu ^{b,c,*}, Peter A. Vanrolleghem ^d

^a Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada

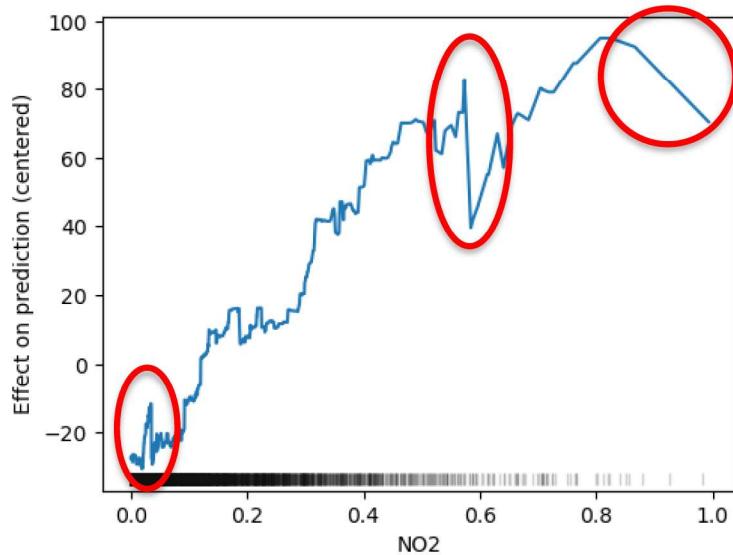
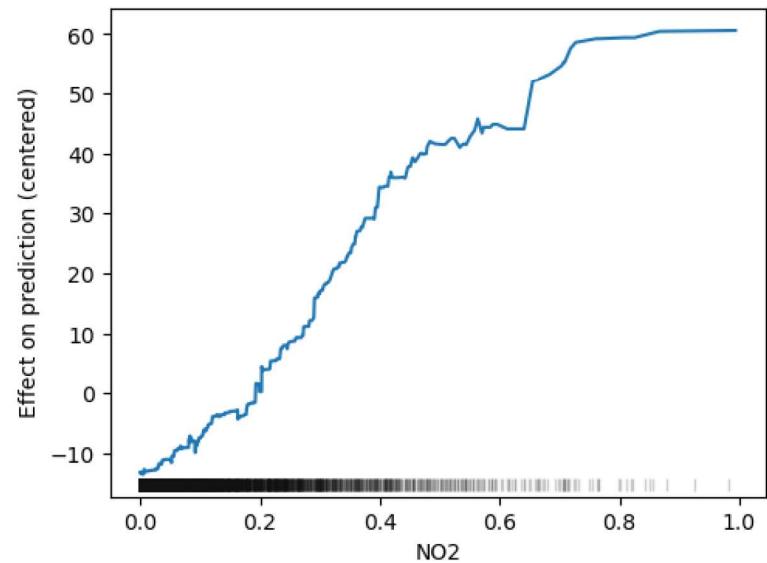
^b Department of Civil and Environmental Engineering, McCormick School of Engineering, Northwestern University, United States

^c School of Civil and Environmental Engineering, Queensland University of Technology, Brisbane, Queensland, Australia

^d modelEAU, Département de génie civil et génie des eaux, Université Laval, 1065 av. de la Médecine, Québec, QC G1V 0A6, Canada

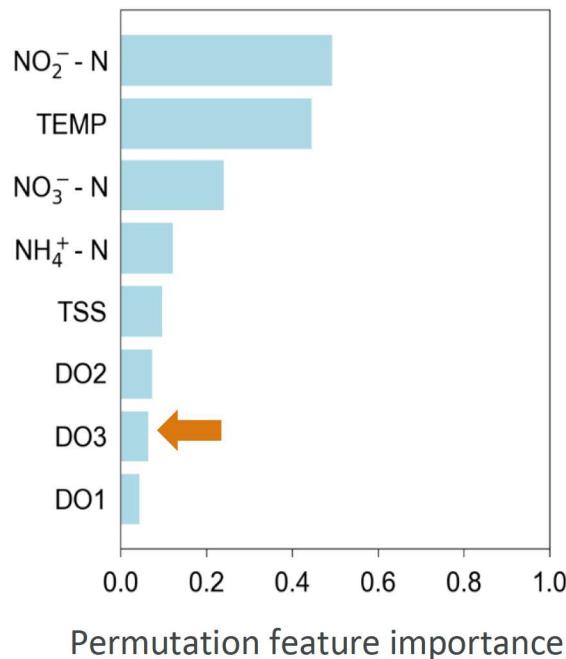
ALIGNMENT WITH DOMAIN KNOWLEDGE

Model Complexity (number of trees)



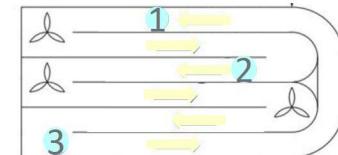
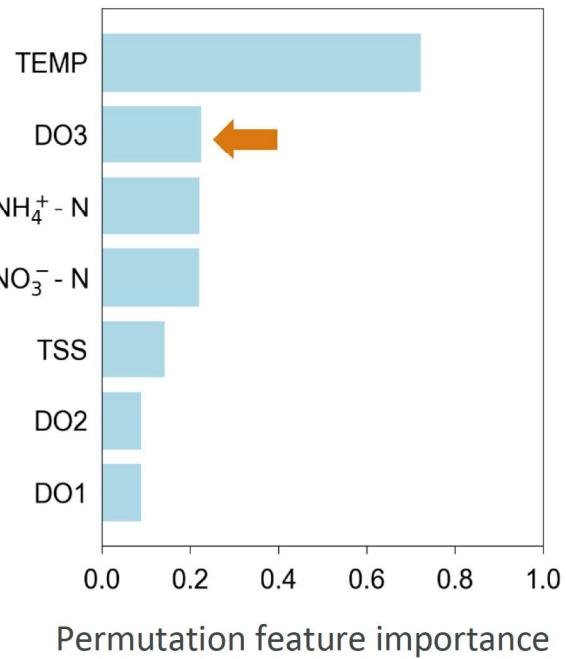
ALIGNMENT WITH DOMAIN KNOWLEDGE

What features are the most important for the model to make prediction?



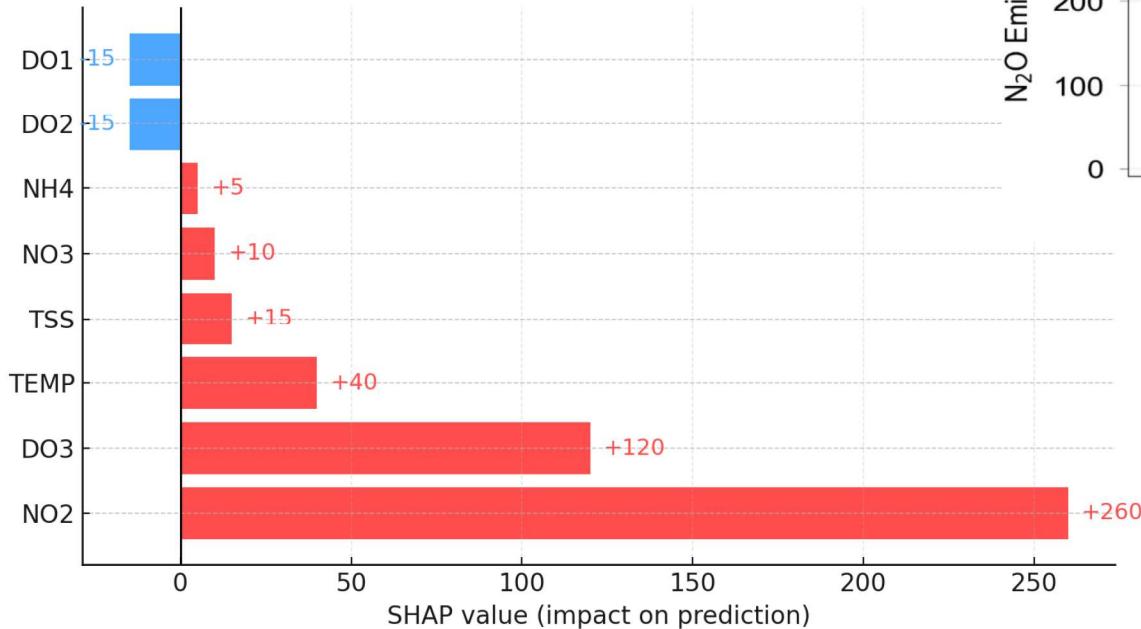
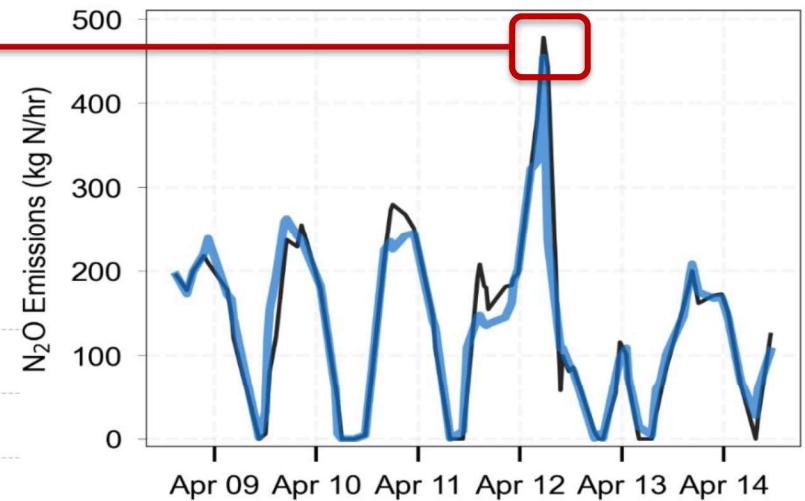
Remove NO_2 from input features

DO Measurement Locations



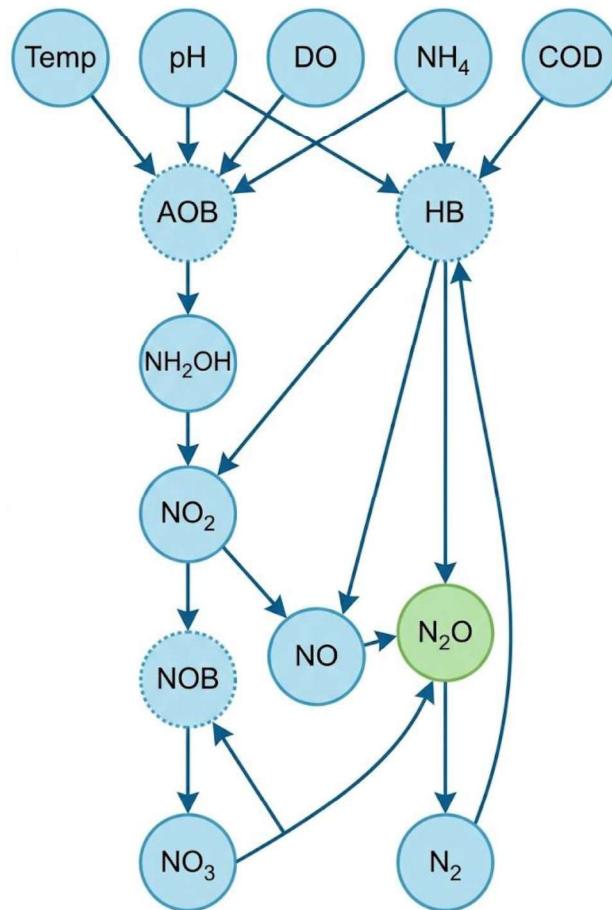
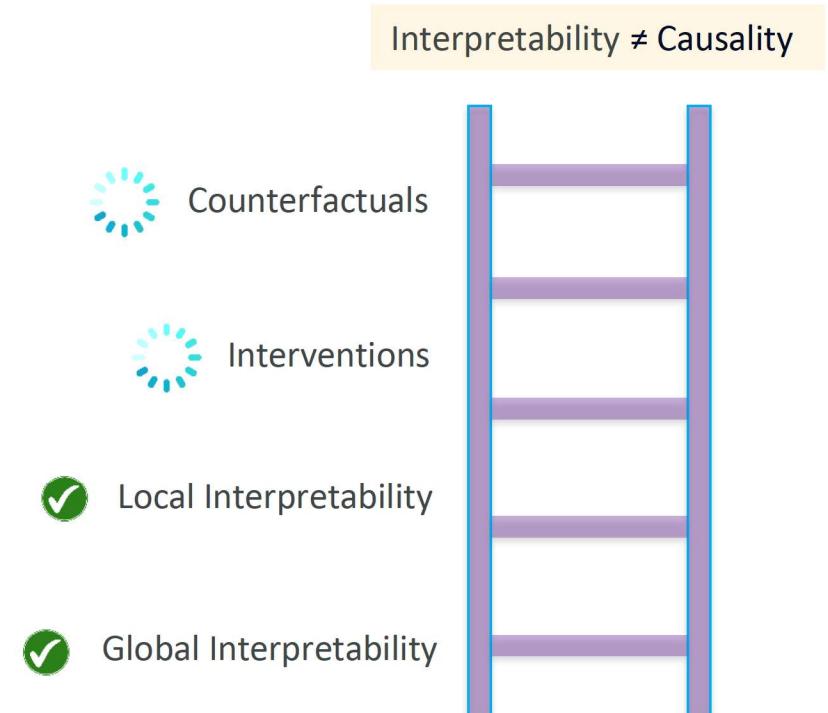
INTERPRETABILITY OF MODEL PREDICTIONS

Why did the model predict this value?



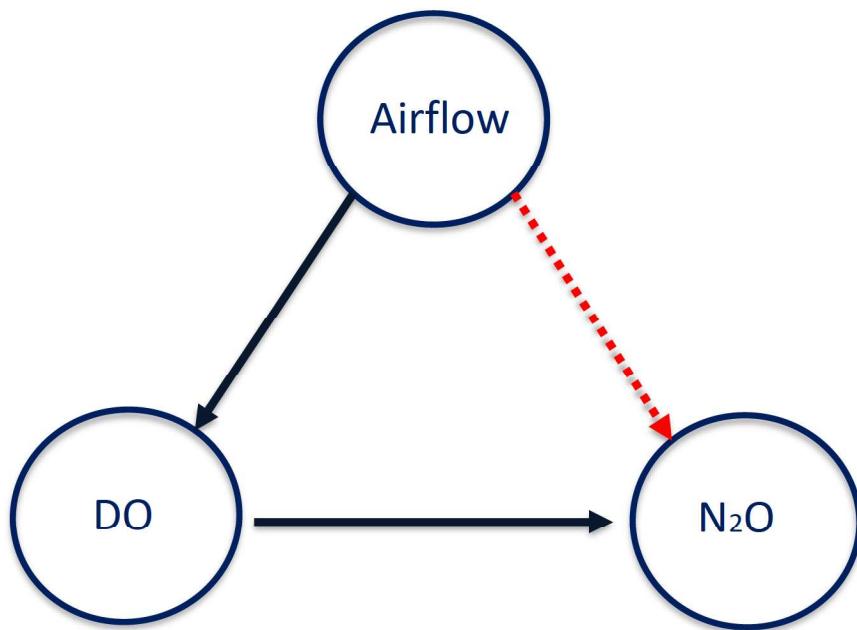
This is not a causal effect!

ADVANCING TOWARDS DECISION SUPPORT



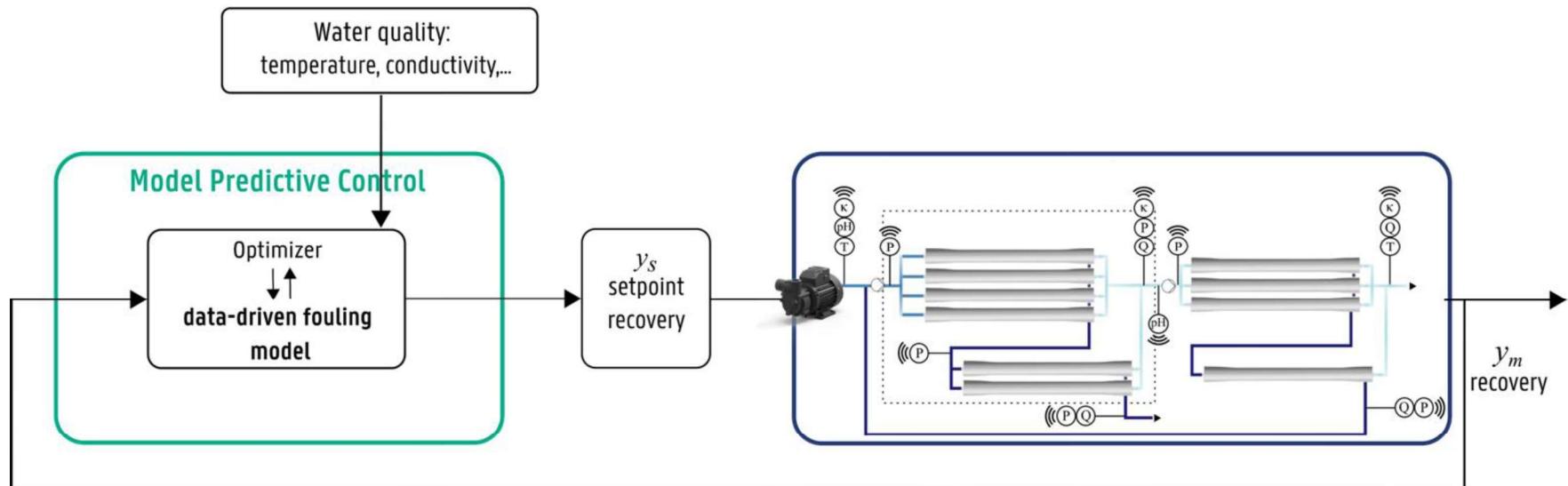
THE CAUSALITY PROBLEM

- Correlation can be misleading when an unmeasured factor (confounder) influences both variables
- $P(N_2O | DO)$: What we observe in the data (correlation)
- $P(N_2O | do(DO) = d)$: What would happen if we *intervene* on DO (causal effect)



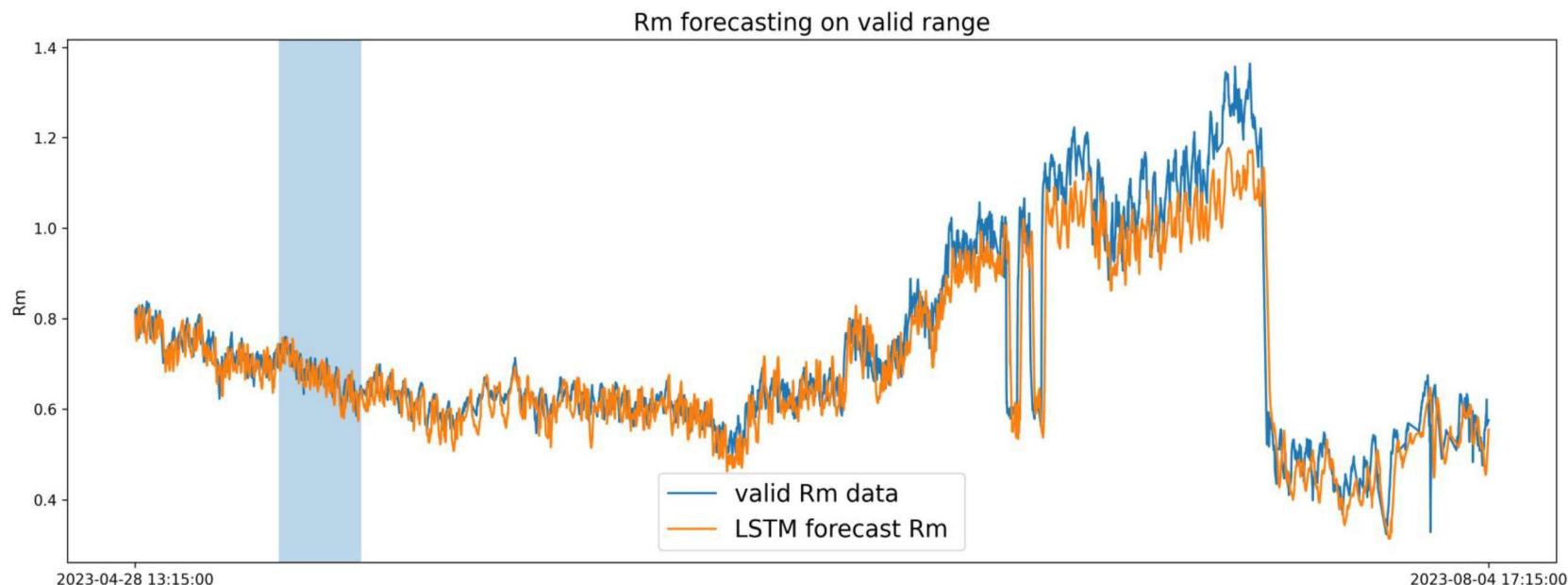
ML models can easily learn correlations
but extracting *causation* requires extra work

EXAMPLE: RO MEMBRANE FOULING FORECASTING

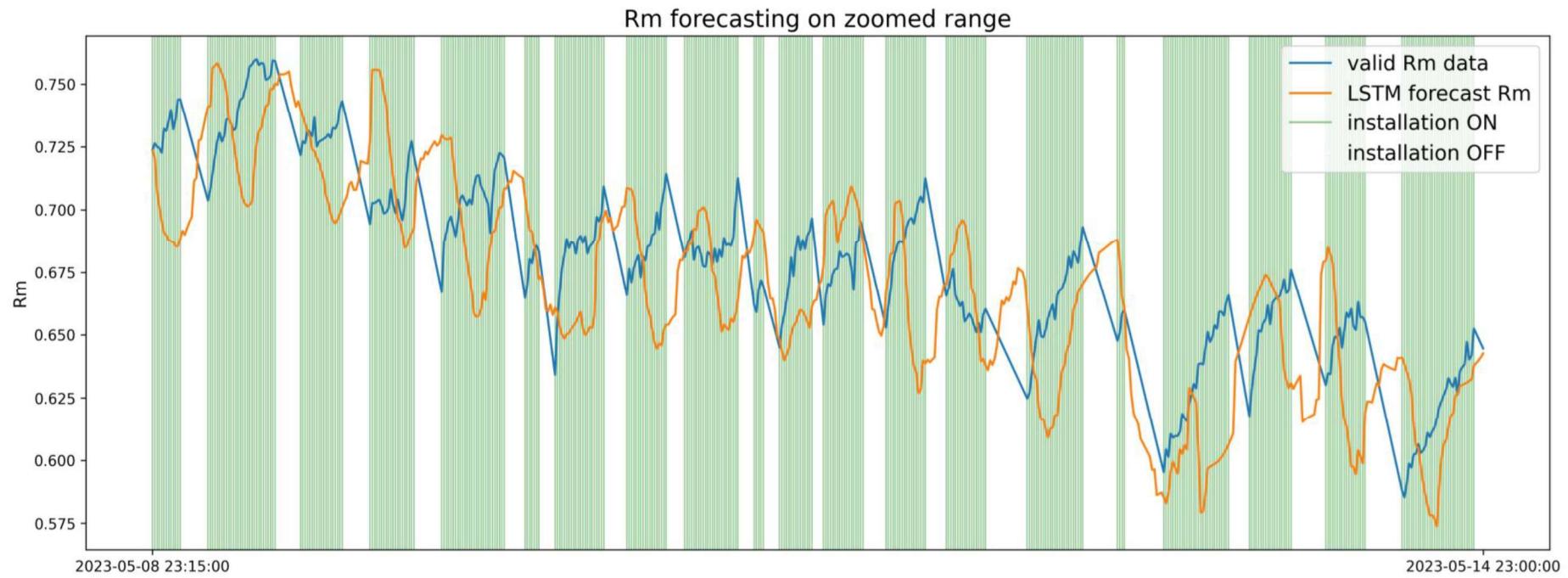


Objective function:
minimize fouling,
maximize recovery

EXAMPLE: RO MEMBRANE FOULING FORECASTING

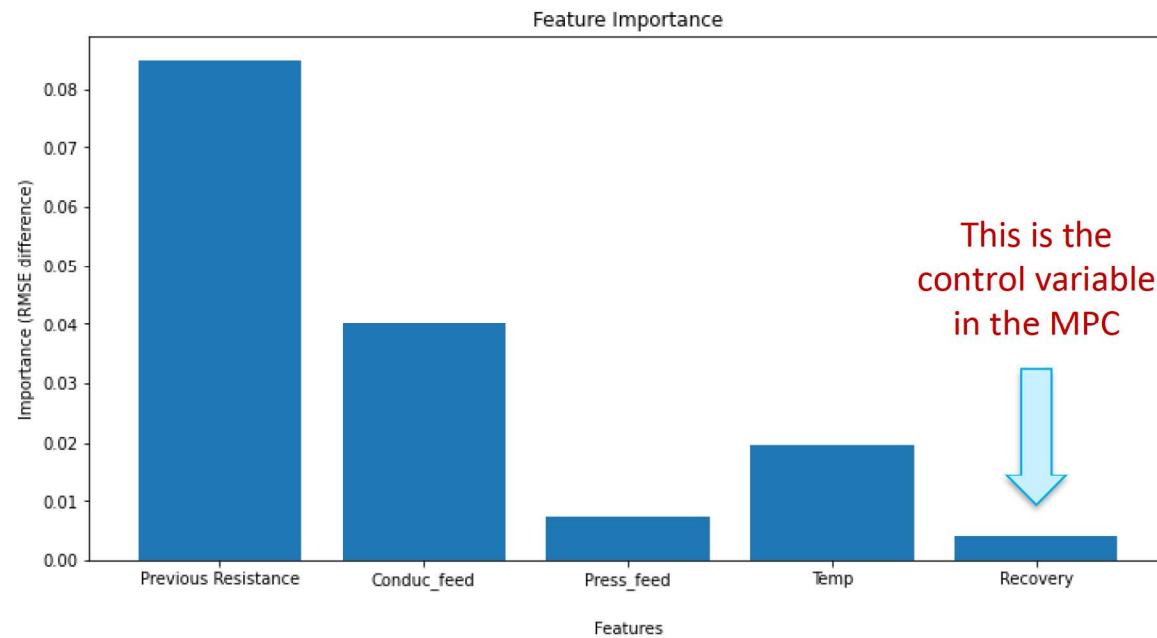


EXAMPLE: RO MEMBRANE FOULING FORECASTING

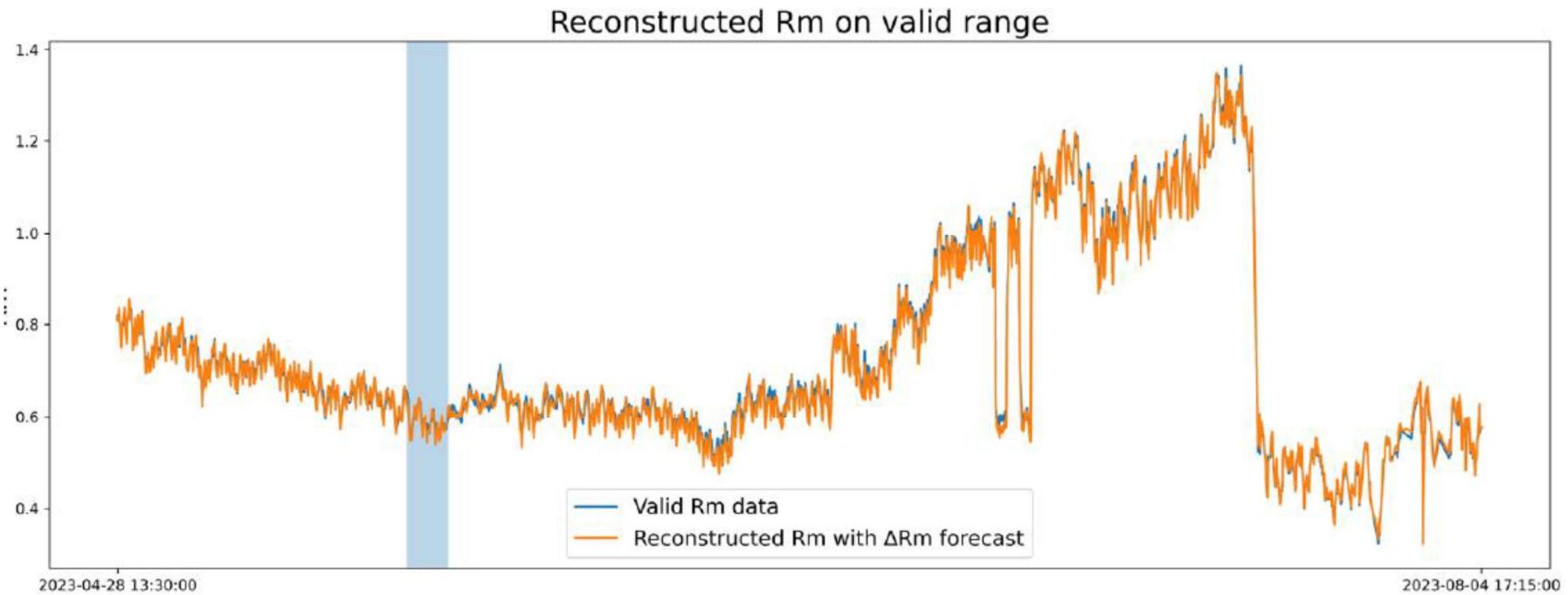


Lag in forecasted fouling (Rm) was caused by frequent OFF periods in the installation

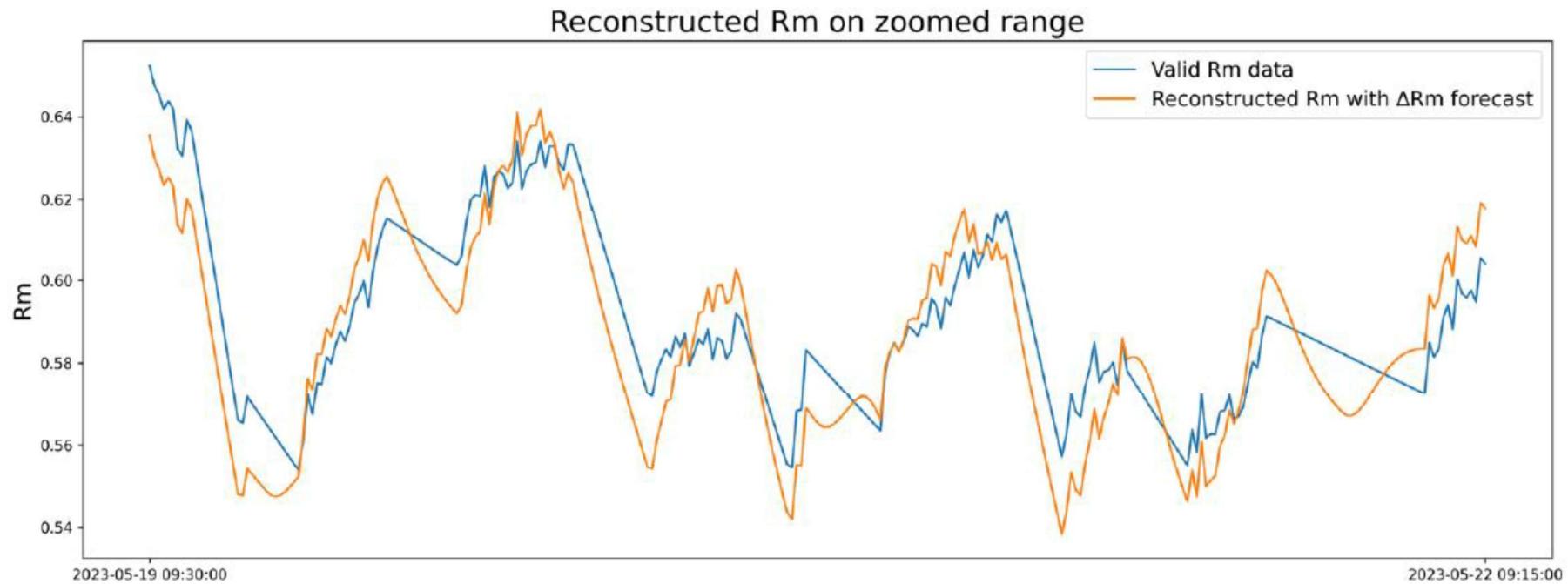
EXAMPLE: RO MEMBRANE FOULING FORECASTING



EXAMPLE: RO MEMBRANE FOULING FORECASTING



EXAMPLE: RO MEMBRANE FOULING FORECASTING



Predicting the *change* in fouling makes the model learn system dynamics directly, eliminating lag and improving responsiveness.

EXAMPLE: RO MEMBRANE FOULING FORECASTING

- Even for a powerful model, forecasting R_m directly made it slower to react to sudden changes (e.g., frequent on – off)
- Predictions were lagged during fast transitions
- ΔR_m prediction is simpler as it removed slow trends and noise (stationary signal)
- Final R_m is reconstructed by adding predicted ΔR_m , leading to better accuracy

KEY TAKEAWAYS!

Thank you!

- Data-driven methods expand our modeling toolbox — they don't replace physics or expertise
- ML is powerful but could be fragile: performance depends more on data and context than on algorithms
- Accuracy can be misleading: a good fit does not mean the model is correct
- ML is not magic. It introduces new challenges (drift, retraining, explainability) that must be managed deliberately
- A model can look right and be wrong. Accuracy is not the whole story