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Schneider et al., 2022. Hybrid modelling in the water and wastewater sector: quo vadis?. Water Science and Technology. 85(9): 2503-2524.
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Scientific Machine Learning

Thompson, M. L., & Kramer, M. A. (1994) Modeling chemical processes

using prior knowledge and neural networks. AIChE Journal, 40(8), 1328—
1340.

Hybrid ANN modeling

How to combine prior knowledge
with ANN models?

: .. Prior knowledge 1s
Prior knowledge 1s mnserted “

) directly in 1l el < ‘ o inserted 1n the ANN during
Design rectly 1n the mode! structure. Training the training ... Parameter
approaches . Parameter dimensionality 1s approaches domain of validity is
reduced ’
reduced
Modular parsaenr‘ln;ric Inequality Objective
design . constraints function
g design
Serial + Physics
‘ eria Informed Neural
S_erqal Parallel Parallel Networks
ﬂi‘;ﬁf’i‘;z&) | Thompson & (PINNSs)

Kramer (1994)



Scientific Machine Learning

Thompson, M. L., & Kramer, M. A. (1994) Modeling chemical processes

using prior knowledge and neural networks. AIChE Journal, 40(8), 1328—
1340.

Hybrid ANN modeling

How to combine prior knowledge
with ANN models?

Prior knowledge 1s mnserted
Design directly 1n the model structure.

approaches | - Parameter dimensionality 1s
reduced

Prior knowledge 1s
mserted in the ANN during
the training .. Parameter
domain of validity 1s
reduced

Training
approaches

Modular arsaenT;Eric Inequality Objective
design P design constraints function
Serial + Physics
. eria Informed Neural
Piigil& Parallel Parallel Networks
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Hybrid Modelling Architectures

Serial

INPUT welpy Data-driven mode| mlpW VY EYS ifoR1gl01e 5 OUTPUT

Parallel Mechanistic model
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Hybrid modelling working group initiative to

collect, review and publish hybrid modelling
Sources: Schneider et al. 2022, Quaghebeur et al. 2022 exam pleS 6



Hybrid Modelling Architectures

—> e.g. interesting in case of incomplete
knowledge or oversimplification and / or
for accuracy gains

Parallel Mechanistic model

INPUT ouTPUT

Data-driven model

Sources: Schneider et al. 2022, Quaghegbeur et al. 2022



Example pilEAUte WRRF
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Parallel hybrid model for effluent nitrate

CODt,

influent

CODs.

influent

NH4'Ninfluent
TSS,

influent

Temperature, ¢4

Influent flowrate

Sludge waste flowrate

Neural network

E rror N O3eff|uent

Hybrid model

N03effluent

Mechanistic model

Mech. model NO;4ent

9
Verhaeghe et al. (2024). Towards good modelling practice for parallel hybrid models for wastewater treatment processes. Water Science and Technology.




Parallel hybrid model for effluent nitrate

Training period
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Verhaeghe et al. (2024). Towards good modelling practice for parallel hybrid models for wastewater treatment processes. Water Science and Technology.



Hybrid Modelling Architectures

—> e.g. interesting in case of incomplete
knowledge or oversimplification and / or
for accuracy gains

Parallel Mechanistic model

INPUT ouTPUT

Data-driven model

Sources: Schneider et al. 2022, Quaghe}?e}fr et al. 2022



Hybrid Modelling Architectures

INPUT welpy Data-driven model Mechanistic model OUTPUT

Mechanistic model

Serial

Parallel

INPUT OUTPUT

Data-driven model

Sources: Schneider et al. 2022, Quaghe}?eﬁr et al. 2022



Hybrid Modelling Architectures

INPUT welpy Data-driven model Mechanistic model OouUTPUT

—> e.g. interesting if overall mechanistic

Serial

model structure holds, but sub-processes
are insufficiently defined

Sources: Schneider et al. 2022, Quaghe}?eér et al. 2022



, ..|||

' ¢ 4fu
' 4 2 , . )

ns.__i.n

- ‘-l‘ o

i ﬁﬂ,\,
’., A\“ ,I_ r.- : r —-\%
gl - 0 UL ;
AR sy ;
.W h B . o <
" ’ L Ly X Ve ?, o/. \
quwspryt ,f

¥
>

s
.5\». " v : ;_ S : 1 .
2 .w, ,,._ | .

N
<

v "Yv i - [ 9
d ,

A rereroyere
Vit strers
S\o 0 0 61616 ¢

7

s A(ed (ed (L) LD(

i

B2
)
o
-
U
o
O
92
-
0
>
O
-

@
o
=
©
>

LL]

Gaublomme et al. (2023). A hybrid modelling approach for reverse osmosis processes including fouling. Desalination.



Example serial hybrid model for RO

LSTM model predicts fouling Mechanistic model
4 A 4 A
! 0. O 1
0 OO Bma =75 | dx
¥ 960 9 R, | —=f(x,L,, B, h)|—
caf OSSO0 B = f(Rmaw) | A1
cIp O 0 h = f(Ryn, W2)

\_ / \_ /

Gaublomme et al. (2023). A hybrid modelling approach for reverse osmosis processes including fouling. Desalination.



Example serial hybrid model for RO

.0

20.0+

17.51

Serial Hybrid Model

15.01

Concentrate pressure (bar)
o
n

10.01

i | . A ‘ 1
s - W
T, "MMD t /
ala
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Gaublomme et al. (2023). A hybrid modelling approach for reverse osmosis processes including fouling. Desalination.



Example Serial hybrid model
with image data

Data-driven Mechanistic
model model

4 o) 4 A

Convolutional }
regression

layer

layers

P=KLa aX
= o (i f(X,U,P)

v \_ /

Borzooei et al. (2024). Evaluation of Activated Sludge Settling Characteristics from Microscopy Images with Deep Convolutional Neural Networks and Transfer
Learning. Journal of Water Process Engineering



Example Serial hybrid model
with image data

107 —— Measurements
8 HM predictions (train) /
—— HM predictions (test) |
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Hybrid Modelling Architectures

Serial ;
O
INPUT welpy Data-driven model Mechanistic model OUTPUT

Option 1: Two step approach

1. Dynamic parameter estimation of parameter of interest in
mechanistic model

2. Train data-driven model to dynamic parameter estimates

Option 2: Train both components together — Universal
differential equations

Sources: Schneider et al. 2022, Quaghe‘?eér et al. 2022



Hybrid neural differential equations
Universal differential equations

Integrated hybrid model

/ Mechanistic Data-driven
component component
dx

i f(jf) +  nn(x)

= X + -
'uK+x

\_ /

O
O

QOO0
OOOOO

Quaghebeur et al., 2022. Hybrid differential equations: Integrating mechanistic and data-driven
techniques for modelling of water systems. Water Research. 213: 118-166.



Hybrid neural differential equations
Universal differential equations

Integrated hybrid model

/ Mechanistic Data-driven
component component
dx

== [/ (;C) +  nn(x)

= X + -
'uK+x

\_ /

~

O
O

QOO0
OOOOO

Quaghebeur et al., 2022. Hybrid differential equations: Integrating mechanistic and data-driven
techniques for modelling of water systems. Water Research. 213: 118-166.



Example universal differential equation
for RO
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Gaublomme et al. (2023). A hybrid modelling approach for reverse osmosis processes including fouling. Desalination.



Universal Differential Equations for N,O

Universal Differential Equations (UDE)

dX Q
E—V(Xin_x)'l'

e Extend mechanistic models with learned
biokinetic reactions

e Adheres to physical principles, e.g. mass
conservation

e Learned process can be extracted and
interpreted

The Case of N,O Emissions
e Process not fully known

e \We have a multi-year, multi-plant dataset

— Promising conditions for
learning N, O process rate to enhance
process knowledge

Examples

Re-learning denitrification process on plant data

15+

=
o

NOx [gN/m?]

——Measurement
——UDE
—— Default ASM3

230 240 25(
t[d]

Re-learning ammonification rate in synthetic

activated sludge system: Comparison of learned
vs true process rate °

Ammonification rate [gN/m3d]

True Rate
@ Learned Rate
Solution trajectory

2500

X_BH [gCOD/m?]

éawag

aquatic research

Florian Wenk Andreas Froemelt

Our Project: MAD4WW
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Scientific Machine Learning

Thompson, M. L., & Kramer, M. A. (1994) Modeling chemical processes

using prior knowledge and neural networks. AIChE Journal, 40(8), 1328—
1340.

Hybrid ANN modeling

How to combine prior knowledge
with ANN models?

Prior knowledge 1s mnserted
Design directly 1n the model structure.

approaches | - Parameter dimensionality 1s
reduced

Prior knowledge 1s
mserted in the ANN during
the training .. Parameter
domain of validity 1s
reduced

Training
approaches

Modular arsaenT;Eric Inequality Objective
design P design constraints function
Serial + Physics
. eria Informed Neural
Piigil& Parallel Parallel Networks
Ung’ir E19.97) Thompson & (PINNSs)

Kramer (1994)

Scientific model discovery
and refinement

Surrogate
models
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Data
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Surrogate modelling

Data-driven




Example surrogate model for junctions in
drinking water networks

=

<>

CFD model Neural network

Type O

Cross (L = 0) Double-T (L > 0)

At

Objective: predict outlet

concentration ratio

Type 1

RAn (6 inputs, 5 hidden layers)
Data-

driven

D=0.75 D=1.00

0.90! Ome
0857 48
0.807

SYo.757
0.707
0.651
0.60}
0.55

0

Table 1. Parametric space. ool
Parameter Description Range Step size Ty _

t Junction type 0-1 1 K
e Inlet concentration ratio 0-1 0.1

R; Inlet Reynolds number ratio 0.25-5,0.25-12 0.25,1

R, Outlet Reynolds number ratio 0.25-5,0.25-12 0.25,1

D . Diameterratio 0.5-1.5 0.25 Gallo et al., 2025. Efficient Junction Mixing Prediction in Drinking Water Distribution Networks
L Dimensionless separation distance 0-10 2

Using Surrogate Models. Journal of Water Process Engineering



Example surrogate model for junctions in
drinking water networks

Percentual differences in water quality
(solute concentrations) between
EPANET simulations with complete
mixing in nodes and simulations
performed using a surrogate model-
derived mixing model.

Gallo et al., 2025. Efficient Junction Mixing Prediction in Drinking Water Distribution Networks
Using Surrogate Models. Journal of Water Process Engineering



Equation discovery

dx
== [/ (x) + nn(x)

Mechanistic | Addneural | Train hybrid
model component model
Improve . .
mechanistic |dentify missing Shapley v_alue
model dynamics analysis

Quaghebeur et al., 2025. Uncovering unknown dynamics in water resource recovery facilities with
neural differential equations and Shapley value analysis. Journal of Water Process Engineering



Equation discovery
dx
— =

fx) + nn(x)

Mechanistic | Add neural Train hybrid
model component model
Improve . .
mechanistic |dentify missing Shapley v_alue
model dynamics analysis

Quaghebeur et al., 2025. Uncovering unknown dynamics in water resource recovery facilities with
neural differential equations and Shapley value analysis. Journal of Water Process Engineering



Equation discovery

Mechanistic
model

Improve
mechanistic
model

Add neural
component

Identify missing

dynamics

Train hybrid
model

Shapley Value

Shapley value
analysis

SNH e
SS XB,H XB,A S0 SNO SNH
Concentration

Quaghebeur et al., 2025. Uncovering unknown dynamics in water resource recovery facilities with
neural differential equations and Shapley value analysis. Journal of Water Process Engineering



Equation discovery

Sparse Regression

—Sin —sin

: a " Y-
solver a + b? @ 0

Ra @
Candidates | |

a + b?

Genetic Programming

/@\ @ | +) @) &) b R,

@ @ a + b? 0
®

: C a+ b2
+) @) %) (b) (b Ry
@ Generator Reward

Song et al., 2024. Towards data-driven discovery of governing equations in geosciences.
Communications Earth & Environment



Take aways and perspectives

e SciML
« Groups many methodologies to integrate domain knowledge with
machine learning
« Obtain scalable, domain-aware, robust, reliable, and interpretable
learning

Hybrid modelling is maturing for applications in the water sector but
other SciML methods are underexplored

Each method comes with challenges

Common challenge is model/method selection
* First efforts for GMP ungoing in a combined effort of the GMP and
HM working groups



Scientific Machine Learning

model/method selection
Thompson, M. L., & Kramer, M. A. (1994) Modeling chemical processes e First efforts for GMP
using prior knowledge and neural networks. AIChE Journal, 40(8), 1328—

1340. ungoing (GMP and HM
working groups)

Common challenge is

Hybrid ANN modeling

How to combine prior knowledge
with ANN models?

: . Prior knowledge 1s
Prior knowledge 1s mnserted “

Desi directly n the model structure Traini inserted 1n the ANN during
esign ’ ) T raining the training .. Parameter - = .
approaches | - Parameter dimensionality is approaches | qomain of validity is Scientific model discovery
reduced reduced ' and refinement
Modular parsaenT;Eric Inequality Objective ML-
design design constraints function Surrogate Symbollic enhanced
models regression Data
assimilation
Serial + Physics
: eria Informed Neural
Serial Parallel Parallel Networks
Psichogios & Thompson & (PINNs)
Ungar (1992). P

Kramer (1994)
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