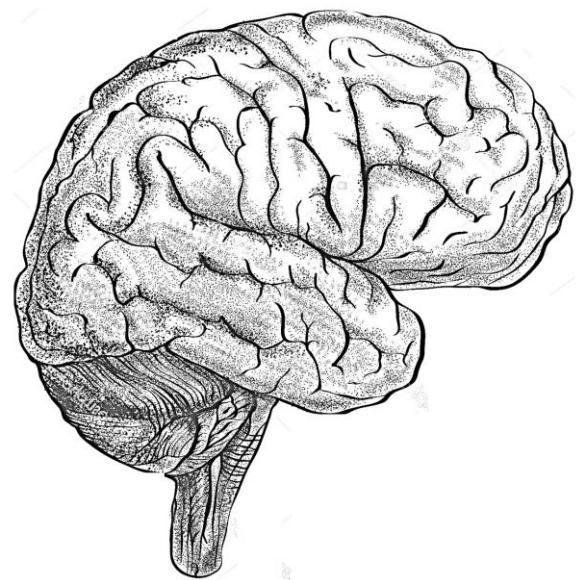


How to integrate domain knowledge with data-driven models

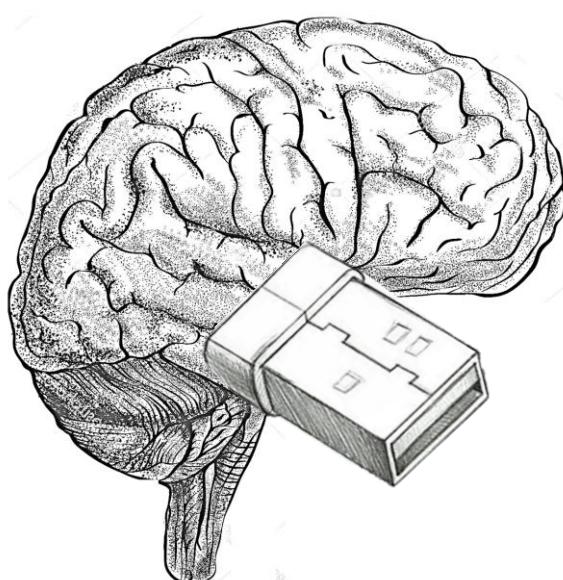
Elena Torfs

Mechanistic



Limited by
knowledge

Hybrid



Balances
knowledge and data

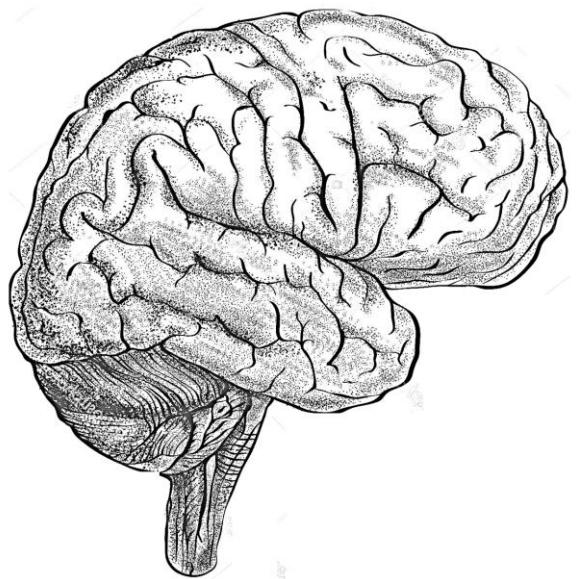
Data-driven



Limited by
data

Scientific Machine Learning

Mechanistic



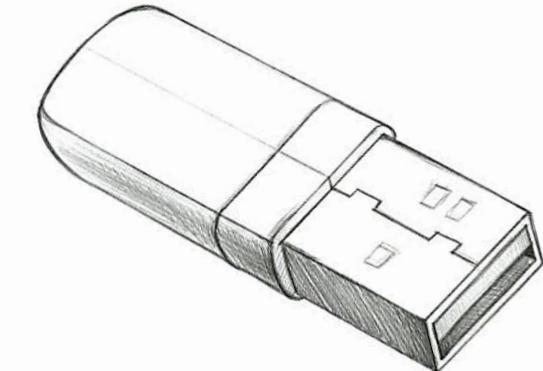
Domain knowledge
Scientific computing

SciML

Scientific Machine
Learning

- Hybrid modelling
- Surrogate models
- Equation discovery
- ML–enhanced data assimilation
- Reinforcement learning with physical constraints
- Physics Informed NN
-

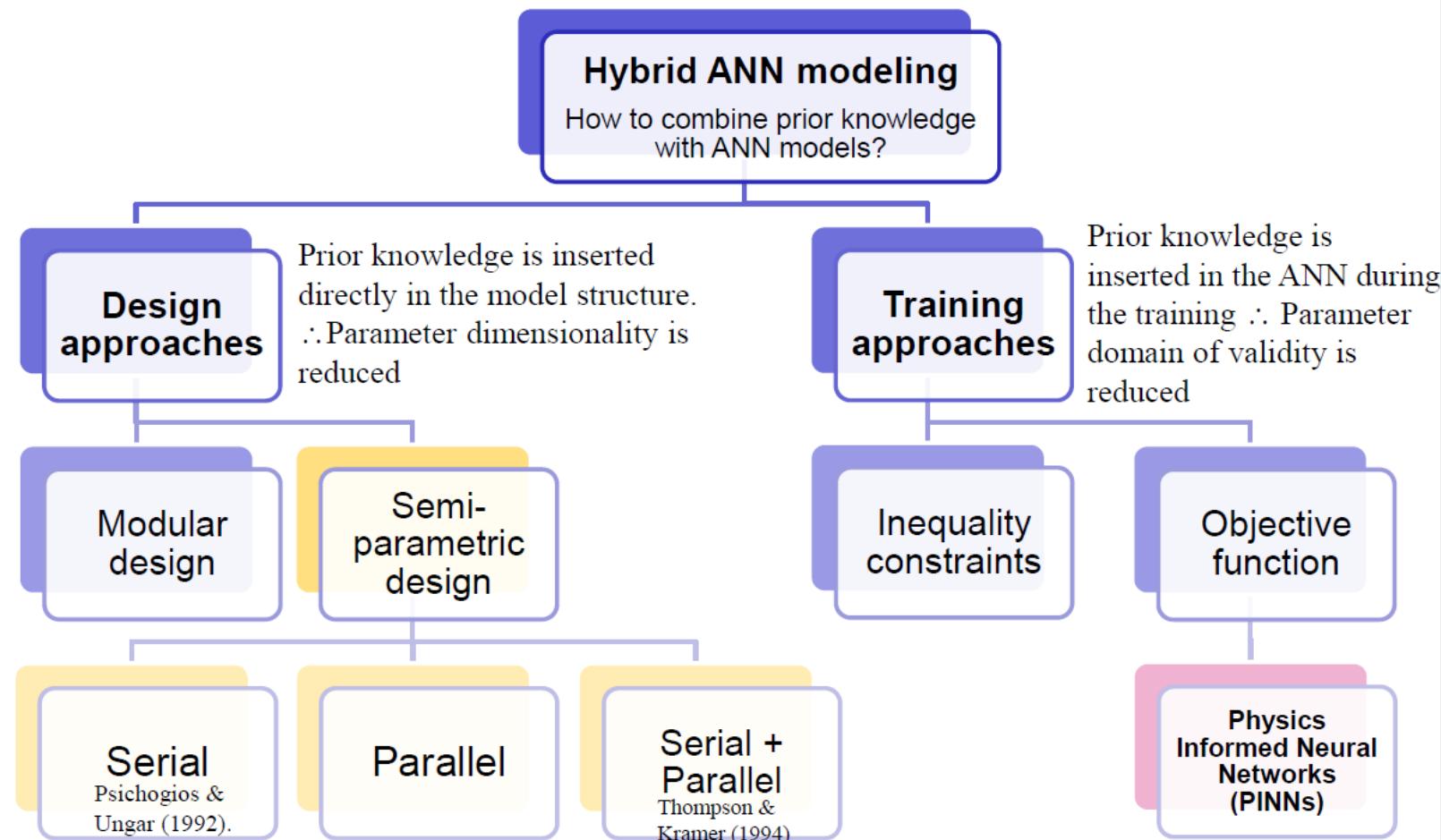
Data-driven



Machine Learning

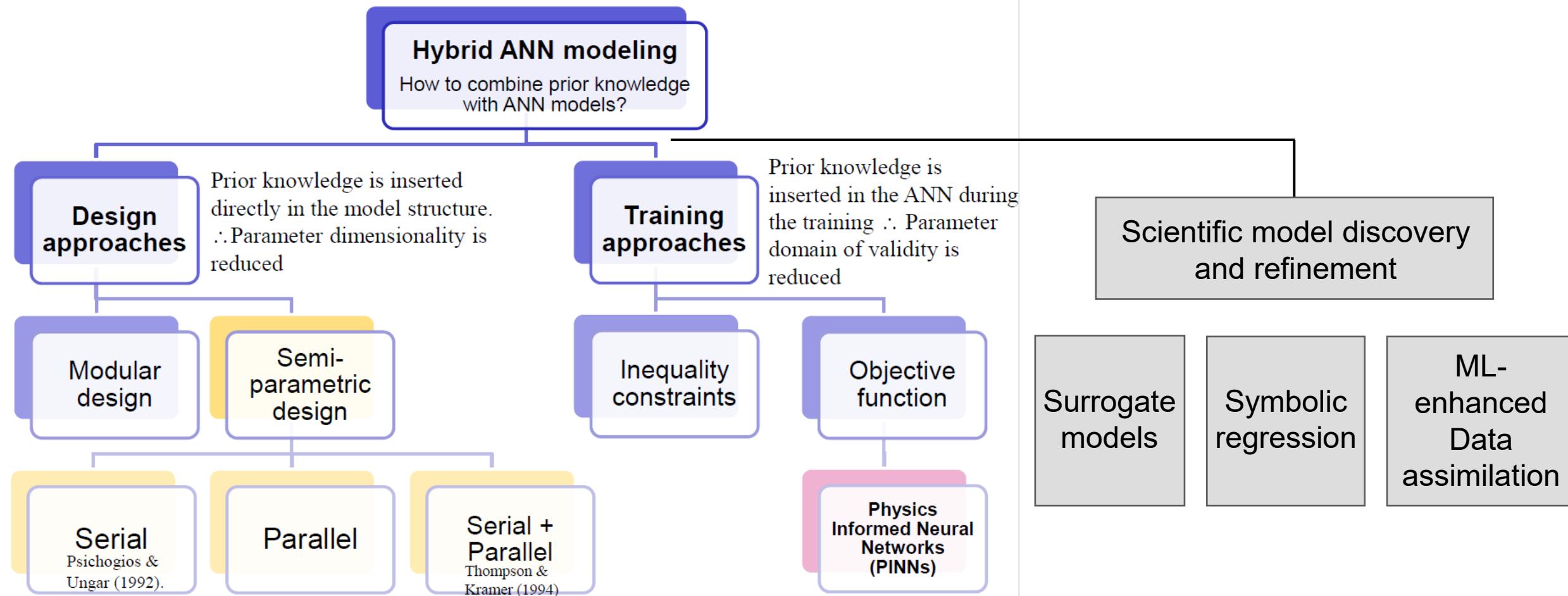
Scientific Machine Learning

Thompson, M. L., & Kramer, M. A. (1994) **Modeling chemical processes using prior knowledge and neural networks**. AIChE Journal, 40(8), 1328–1340. <https://doi.org/10.1002/aic.690400806>



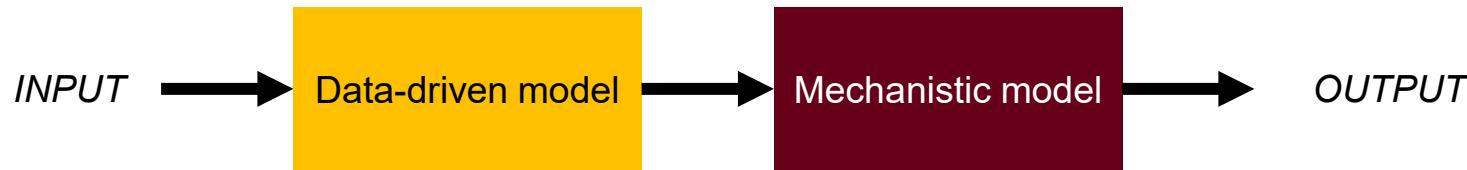
Scientific Machine Learning

Thompson, M. L., & Kramer, M. A. (1994) **Modeling chemical processes using prior knowledge and neural networks**. AIChE Journal, 40(8), 1328–1340. <https://doi.org/10.1002/aic.690400806>

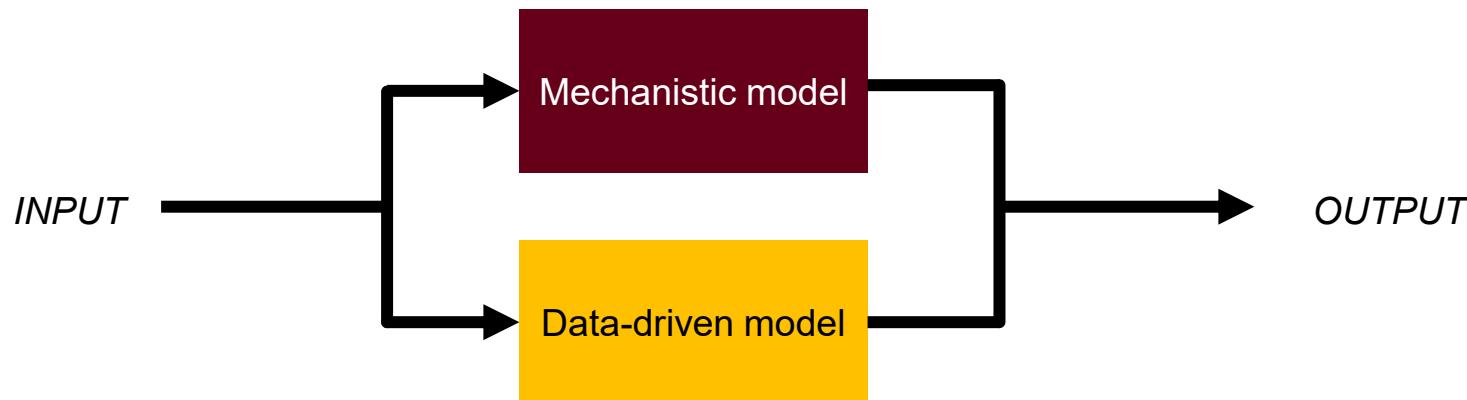


Hybrid Modelling Architectures

Serial



Parallel

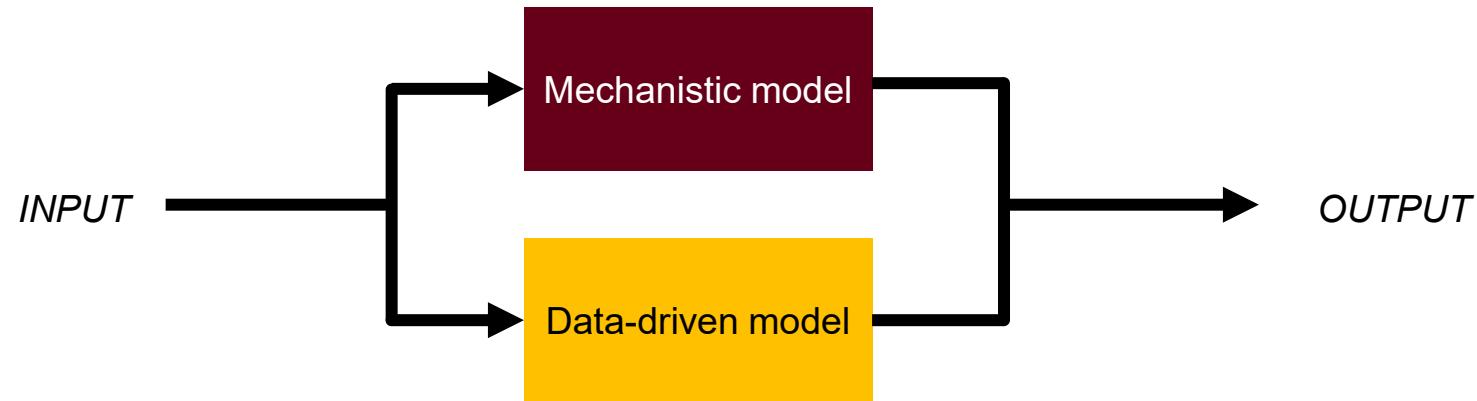


Hybrid modelling working group initiative to collect, review and publish hybrid modelling examples

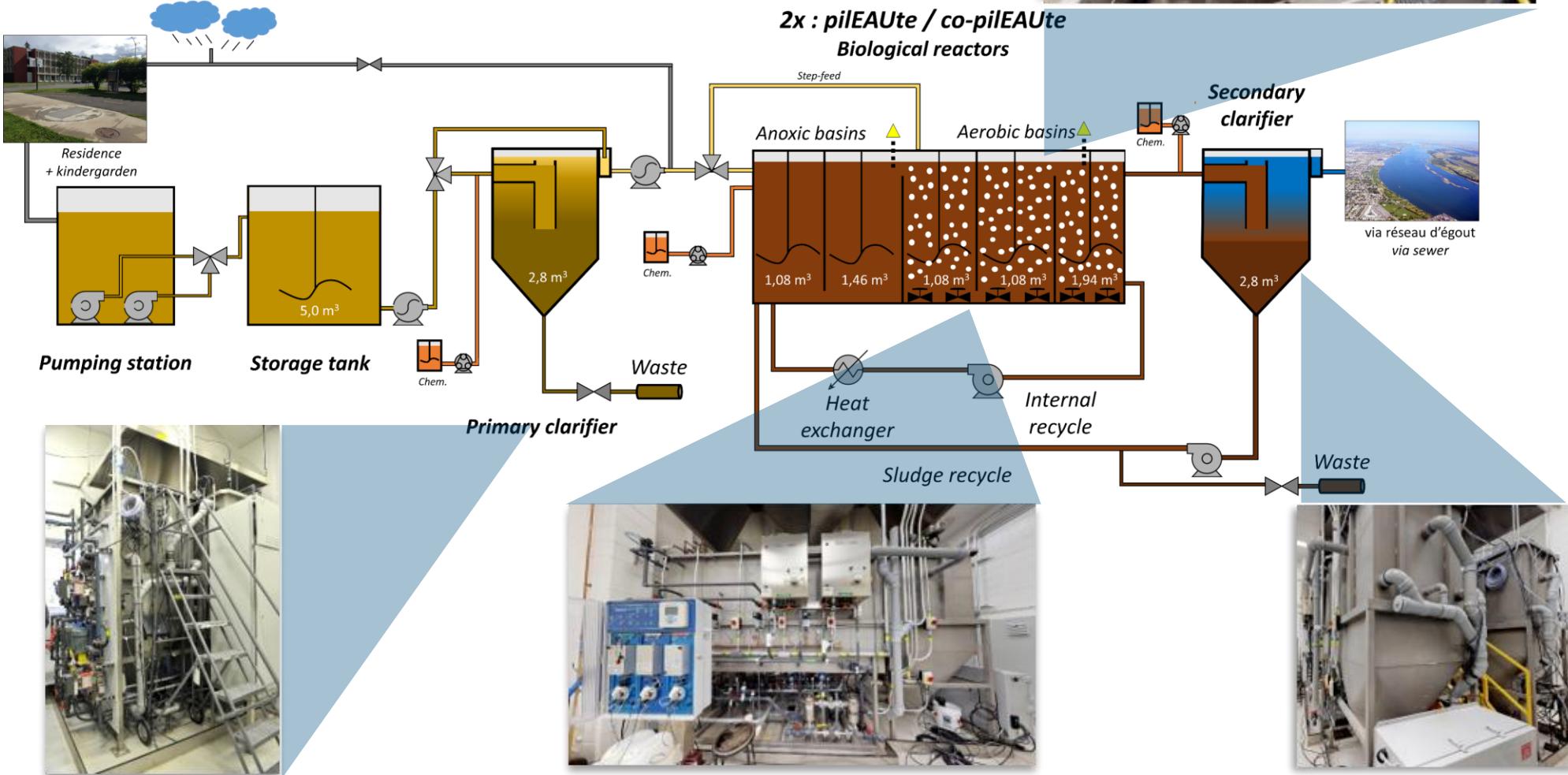
Hybrid Modelling Architectures

→ e.g. interesting in case of incomplete knowledge or oversimplification and / or for accuracy gains

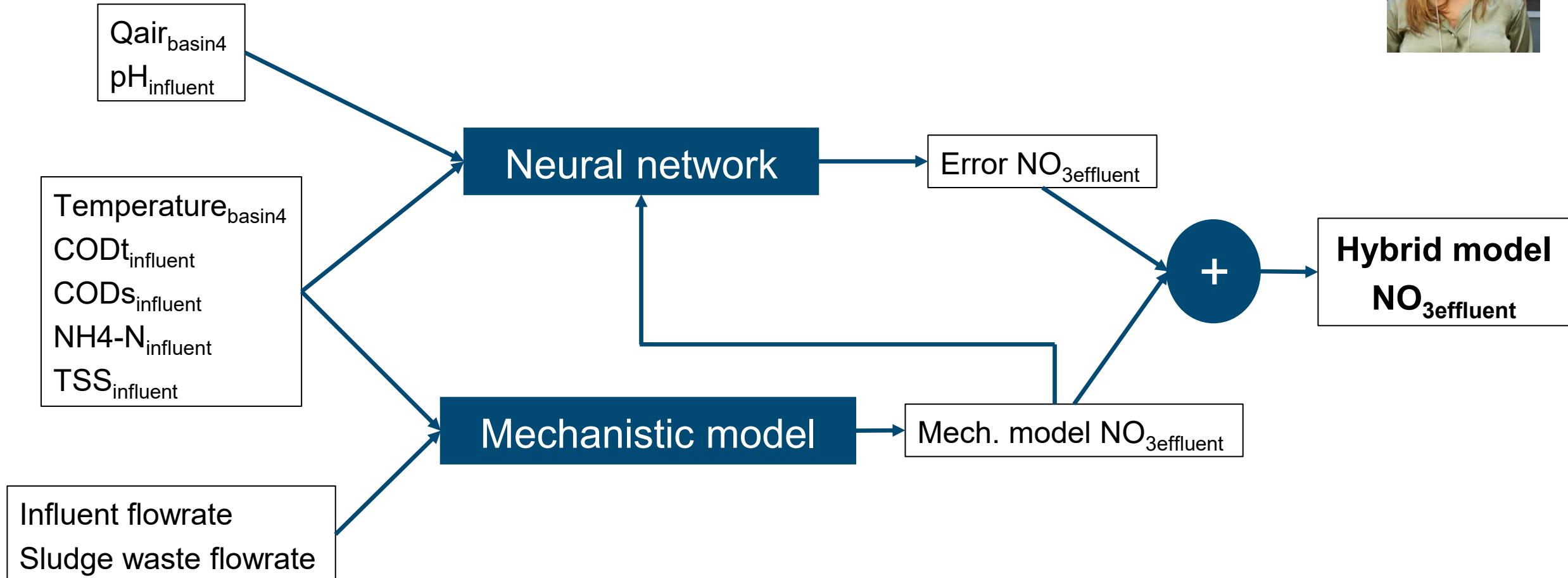
Parallel



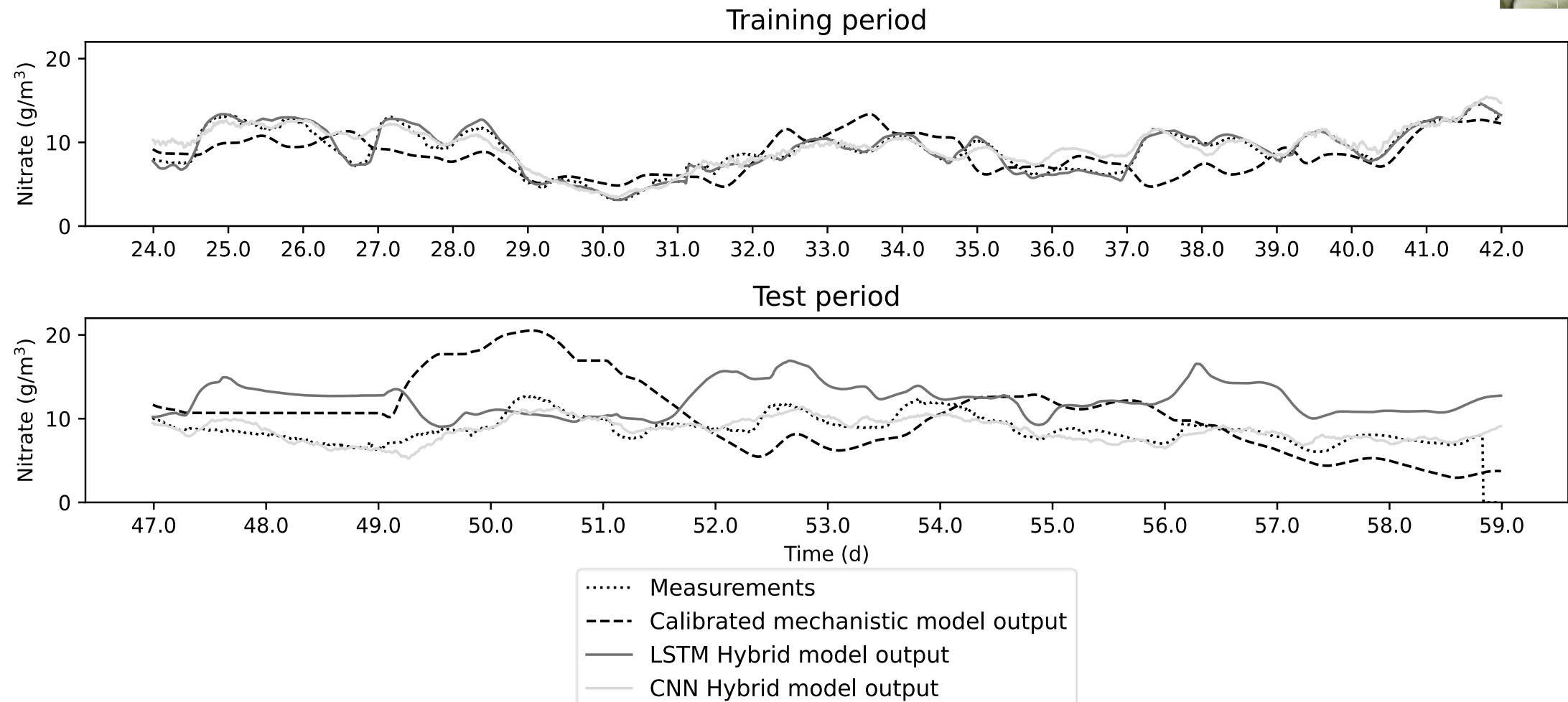
Example pilEAUte WRRF



Parallel hybrid model for effluent nitrate



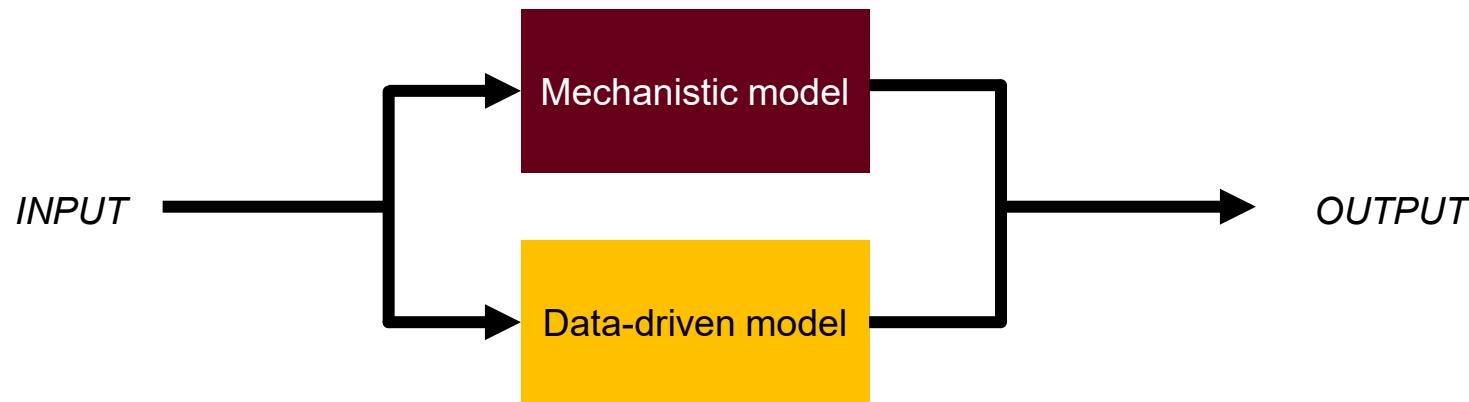
Parallel hybrid model for effluent nitrate



Hybrid Modelling Architectures

→ e.g. interesting in case of incomplete knowledge or oversimplification and / or for accuracy gains

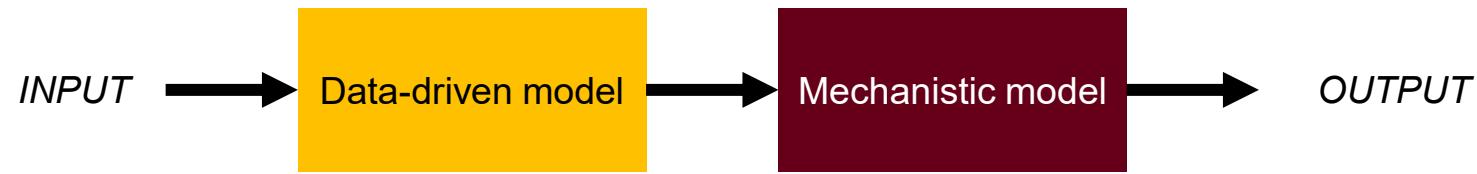
Parallel



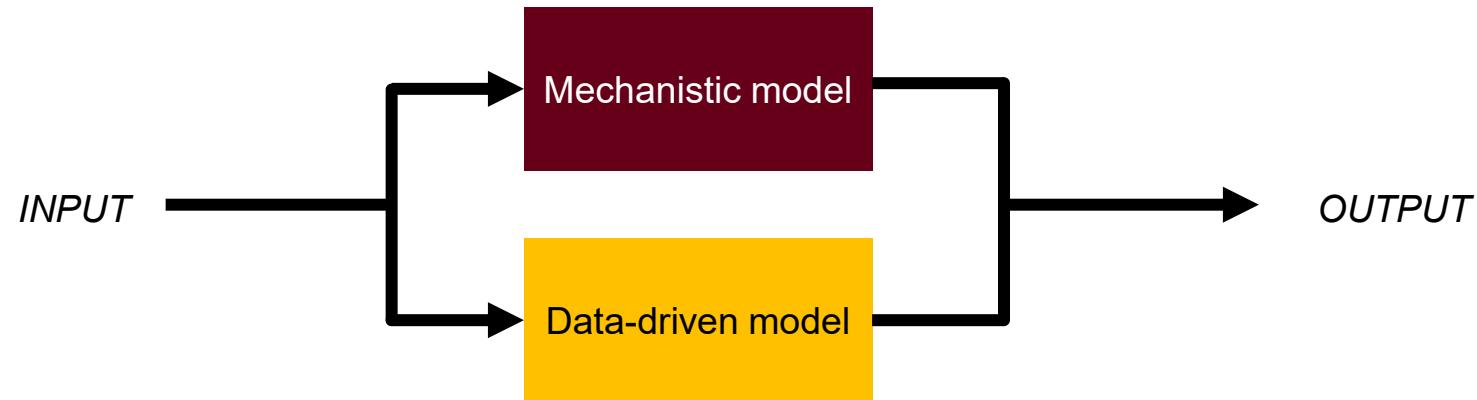
Challenges:
-Mass balance isn't closed
-Balancing the calibration effort

Hybrid Modelling Architectures

Serial

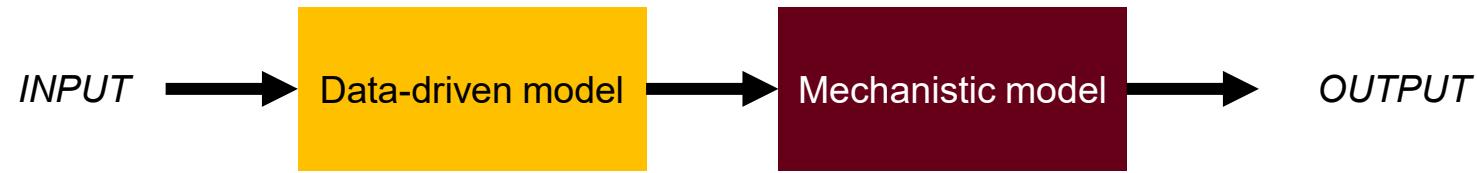


Parallel



Hybrid Modelling Architectures

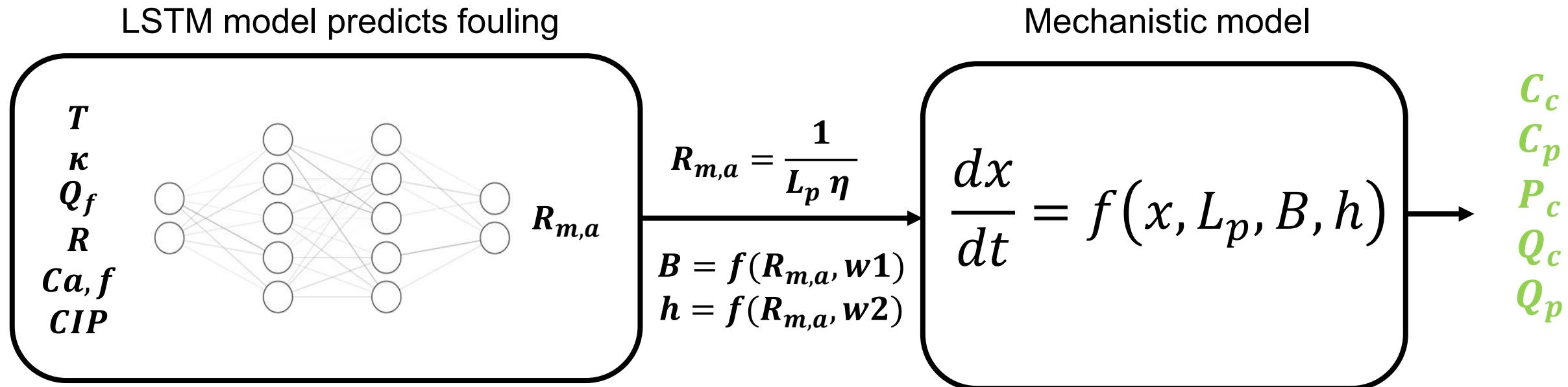
Serial



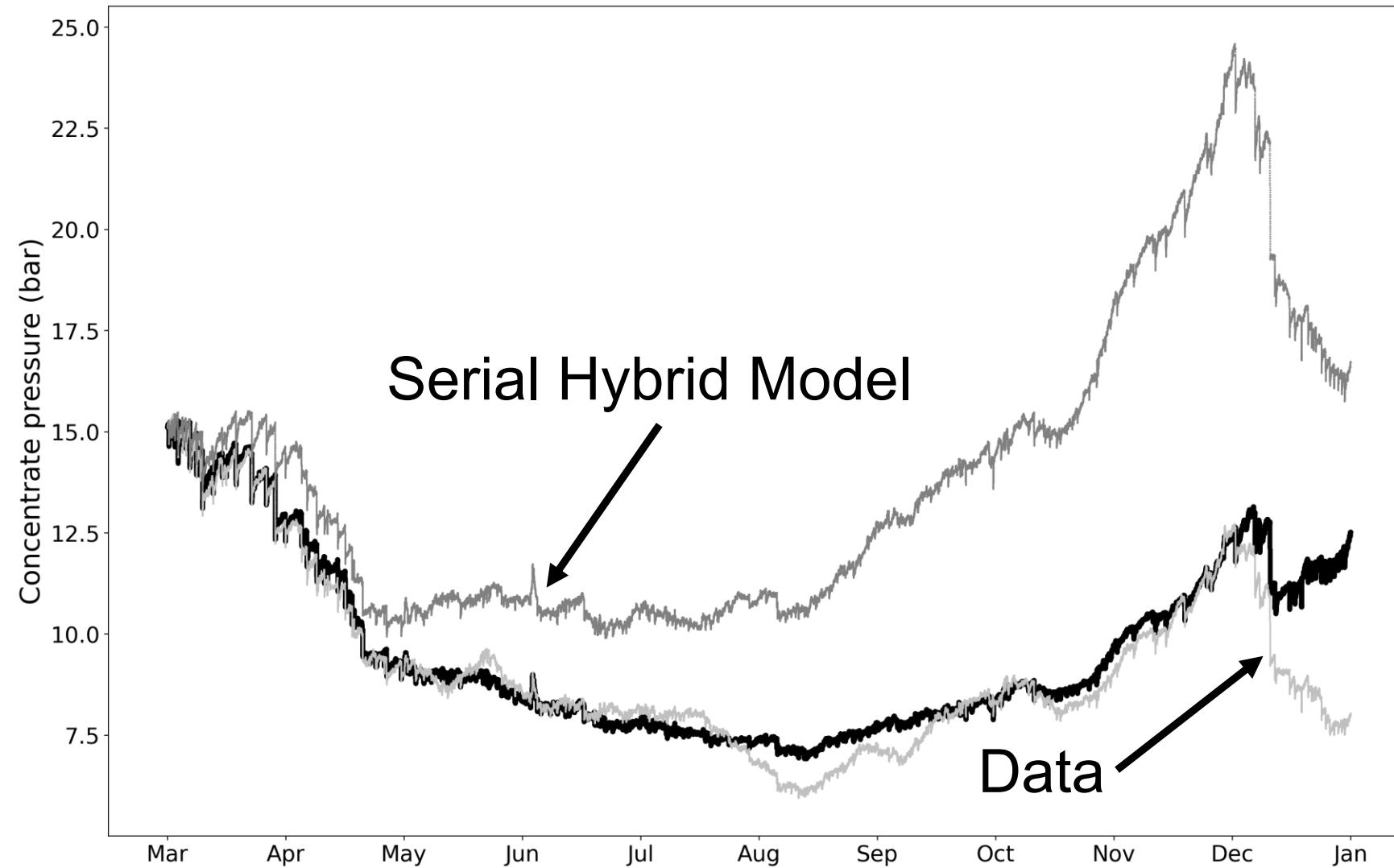
→ e.g. interesting if overall mechanistic model structure holds, but sub-processes are insufficiently defined

Example reverse osmosis

Example serial hybrid model for RO

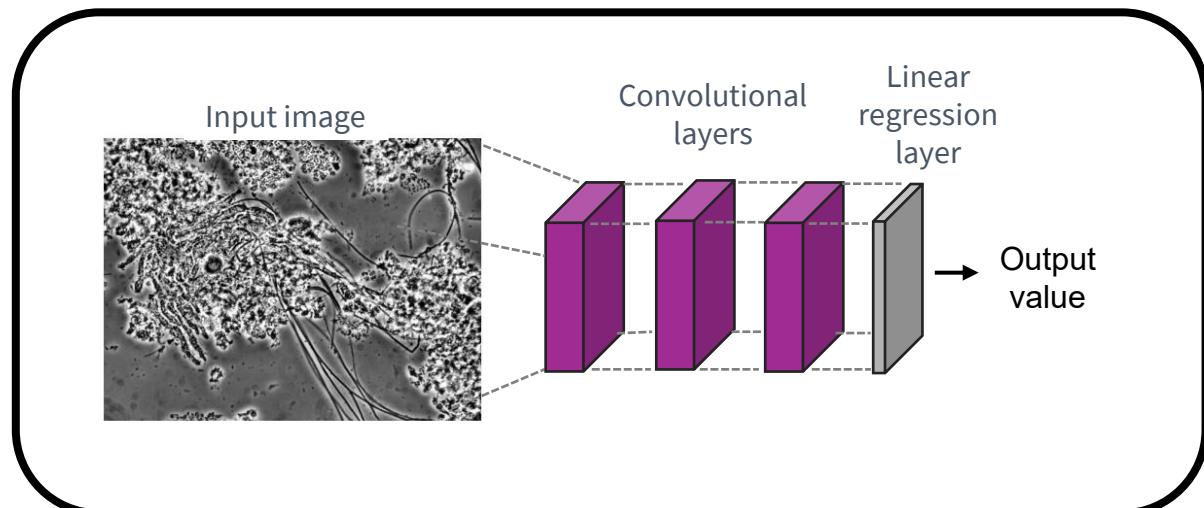


Example serial hybrid model for RO

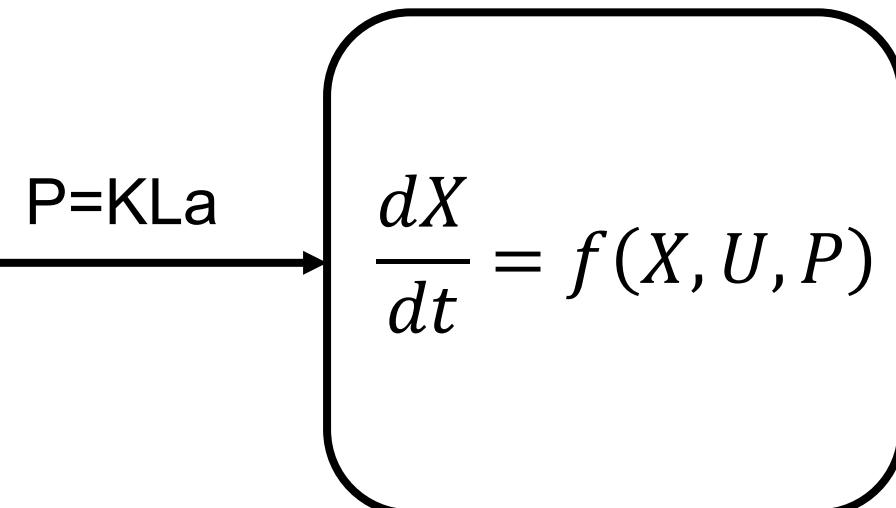


Example Serial hybrid model with image data

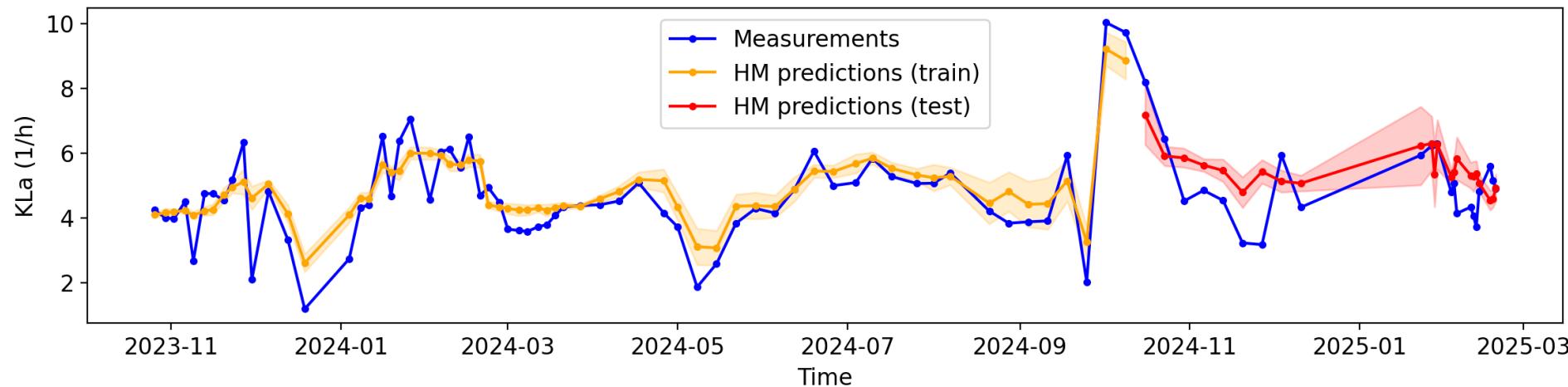
Data-driven
model



Mechanistic
model

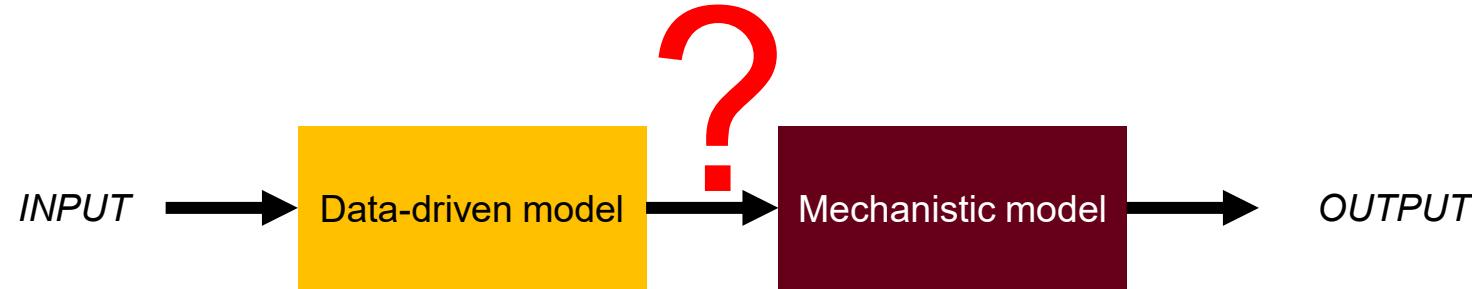


Example Serial hybrid model with image data



Hybrid Modelling Architectures

Serial



Challenge: how to train serial hybrid models?

Option 1: Two step approach

1. Dynamic parameter estimation of parameter of interest in mechanistic model
2. Train data-driven model to dynamic parameter estimates

Option 2: Train both components together – **Universal differential equations**

Hybrid neural differential equations

Universal differential equations

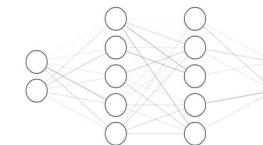
Integrated hybrid model

Mechanistic
component

$$\begin{aligned}\frac{dx}{dt} &= f(x) \\ &= \mu \frac{x}{K+x} x\end{aligned}$$

Data-driven
component

$$nn(x)$$



Hybrid neural differential equations

Universal differential equations

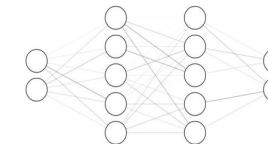
Integrated hybrid model

Mechanistic
component

$$\begin{aligned}\frac{dx}{dt} &= f(x) + \\ &= \mu \frac{x}{K + x} +\end{aligned}$$

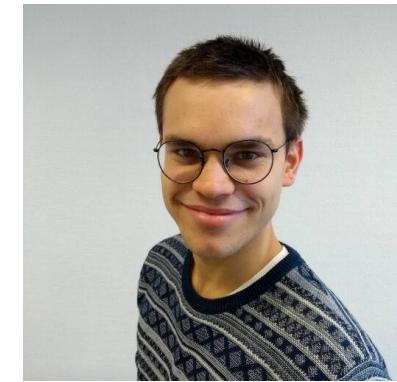
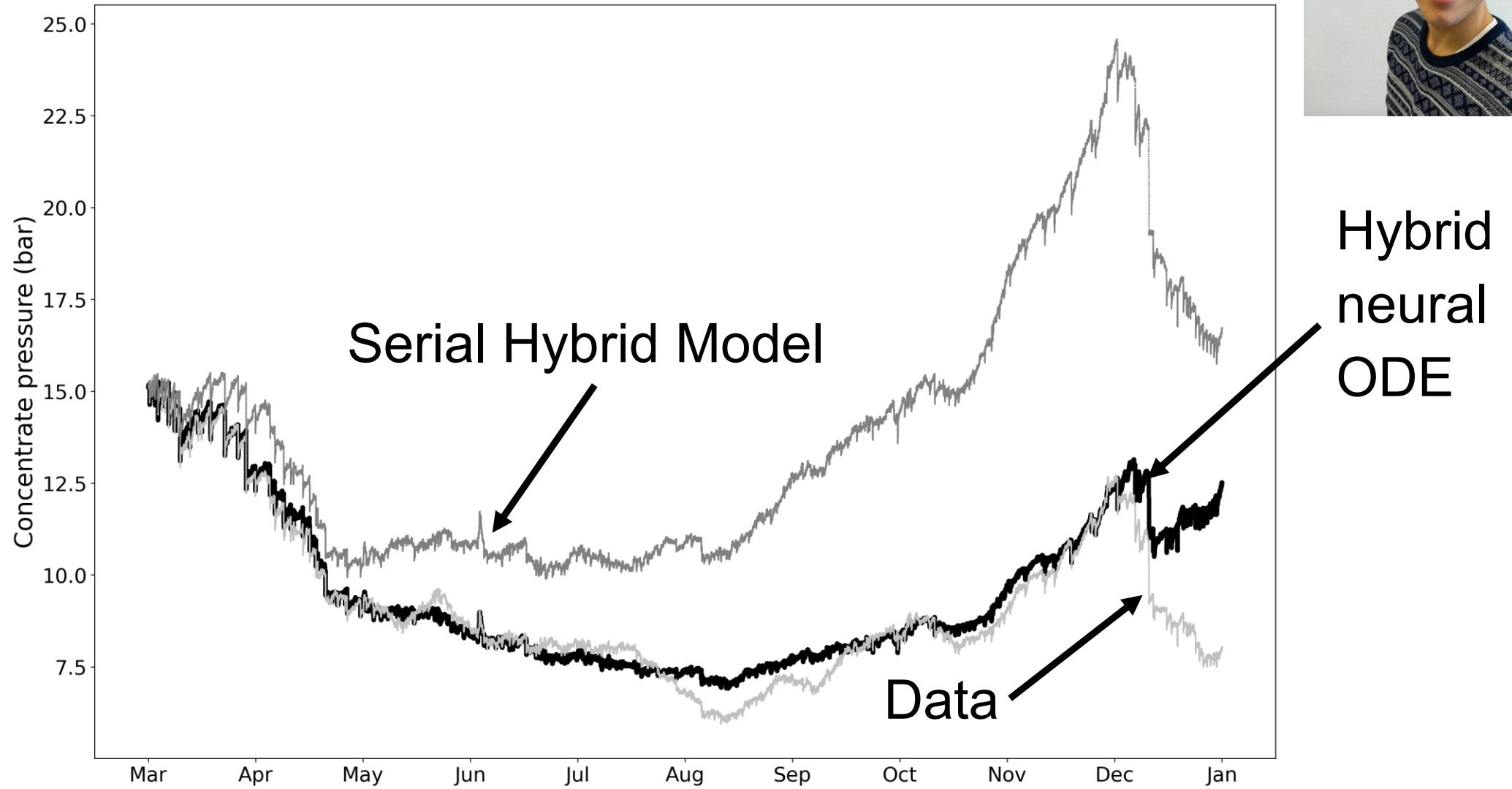
Data-driven
component

$$nn(x)$$



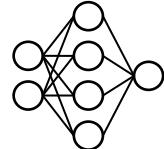
Challenge: how to train Universal
Differential Equations?

Example universal differential equation for RO



Universal Differential Equations for N₂O

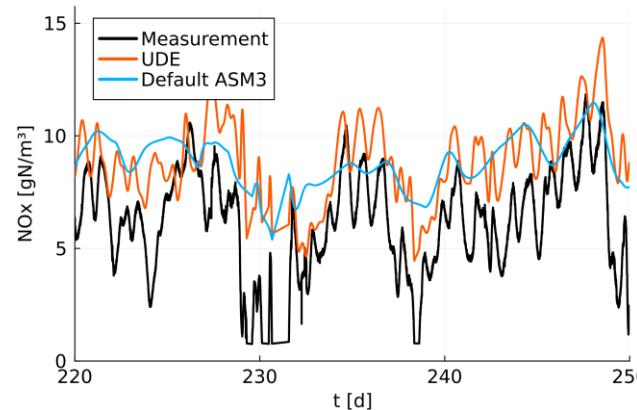
Universal Differential Equations (UDE)

$$\frac{dX}{dt} = \frac{Q}{V} (X_{in} - X) + \text{Diagram}$$


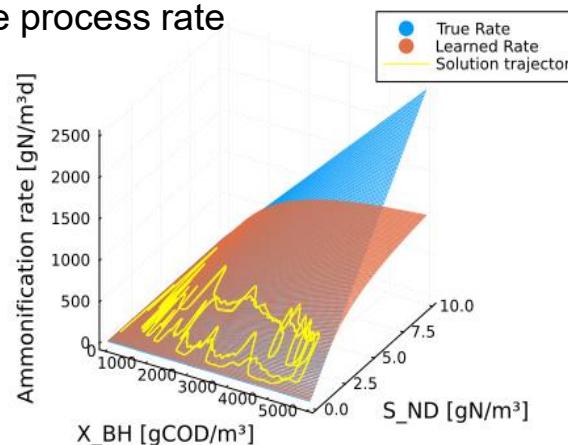
- Extend mechanistic models with learned biokinetic reactions
- Adheres to physical principles, e.g. mass conservation
- Learned process can be extracted and interpreted

Examples

Re-learning denitrification process on plant data



Re-learning ammonification rate in synthetic activated sludge system: Comparison of learned vs true process rate



The Case of N₂O Emissions

- Process not fully known
- We have a multi-year, multi-plant dataset

→ **Promising conditions for learning N₂O process rate to enhance process knowledge**

Florian Wenk

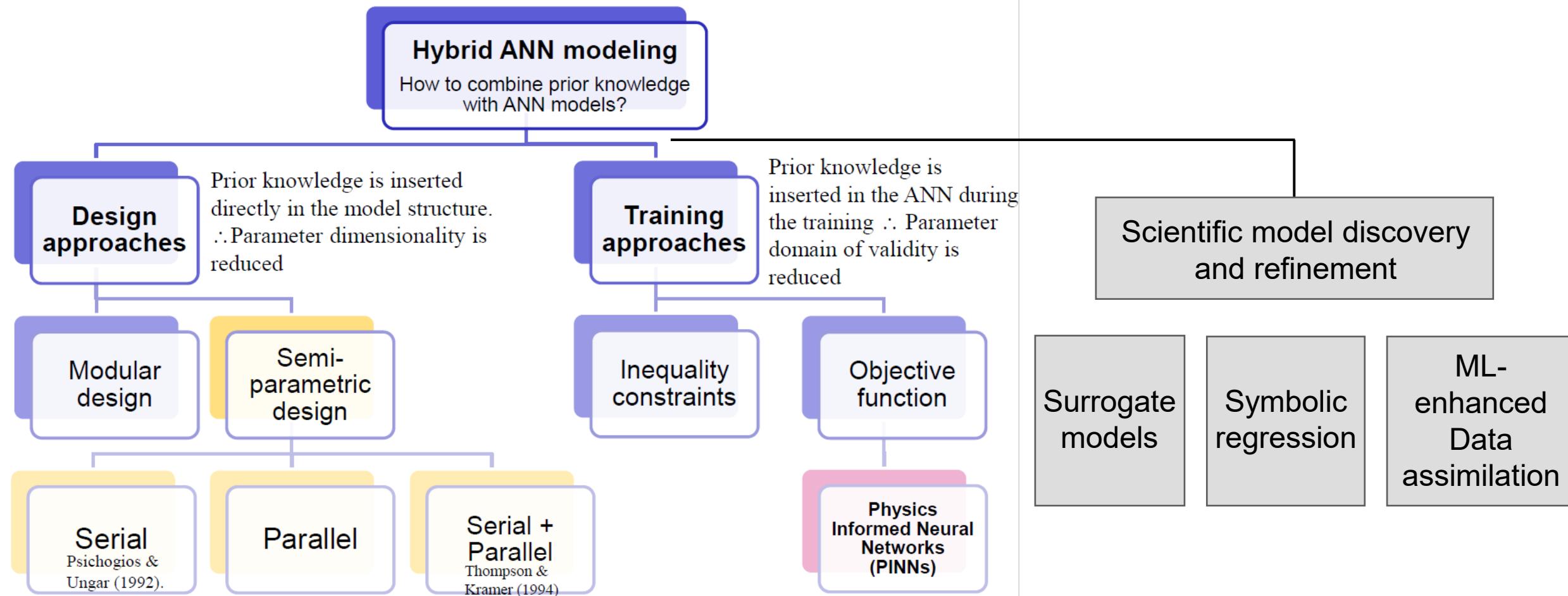
Andreas Froemelt

Our Project: MAD4WW

Our Software-Package

Scientific Machine Learning

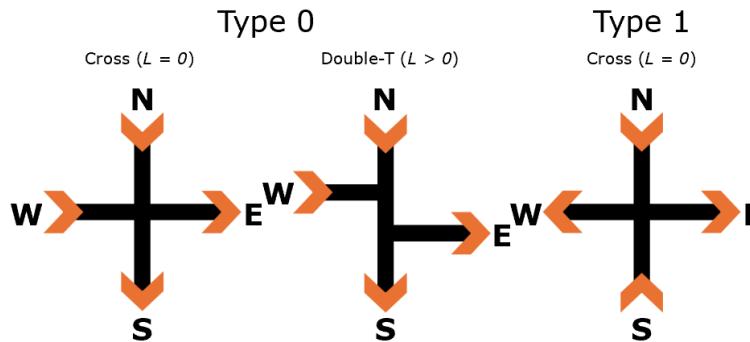
Thompson, M. L., & Kramer, M. A. (1994) **Modeling chemical processes using prior knowledge and neural networks**. AIChE Journal, 40(8), 1328–1340. <https://doi.org/10.1002/aic.690400806>



Surrogate modelling

Example surrogate model for junctions in drinking water networks

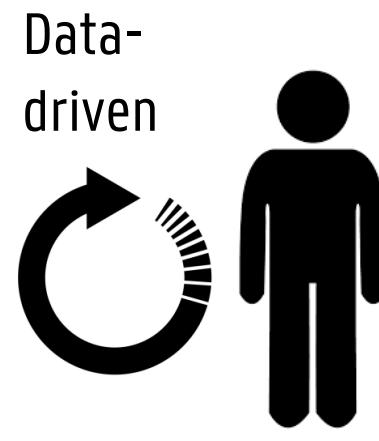
CFD model



Objective: predict outlet concentration ratio

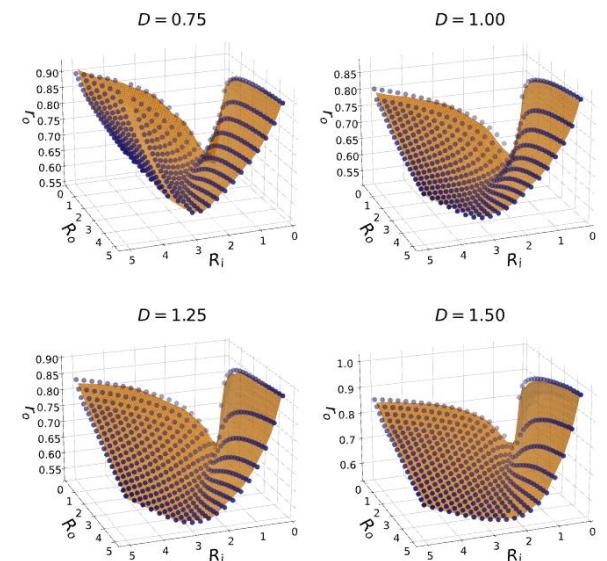
Table 1. Parametric space.

Parameter	Description	Range	Step size
t	Junction type	0 - 1	1
r_i	Inlet concentration ratio	0 - 1	0.1
R_i	Inlet Reynolds number ratio	0.25 – 5, 0.25-12	0.25, 1
R_o	Outlet Reynolds number ratio	0.25 – 5, 0.25-12	0.25, 1
D	Diameter ratio	0.5 - 1.5	0.25
L	Dimensionless separation distance	0 - 10	2



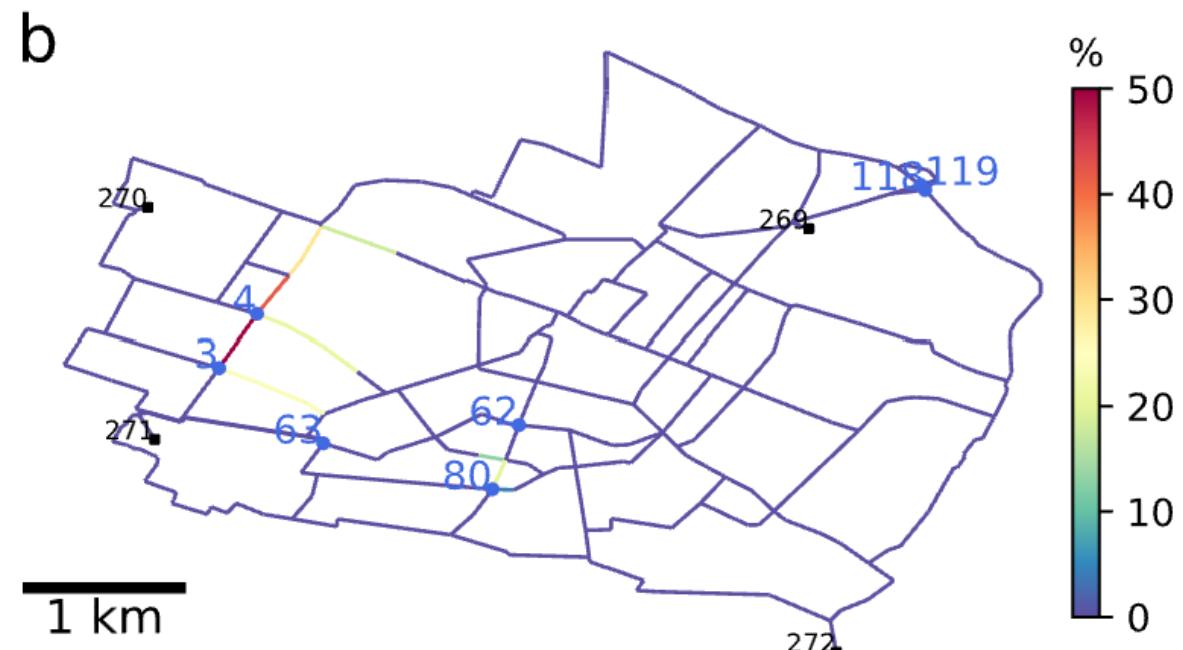
Neural network

(6 inputs, 5 hidden layers)



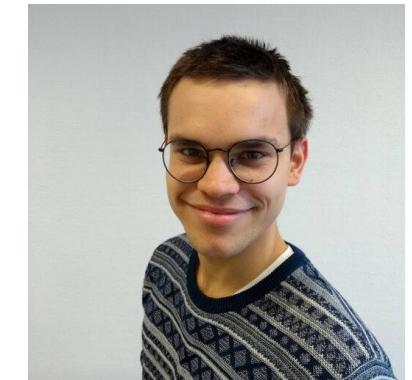
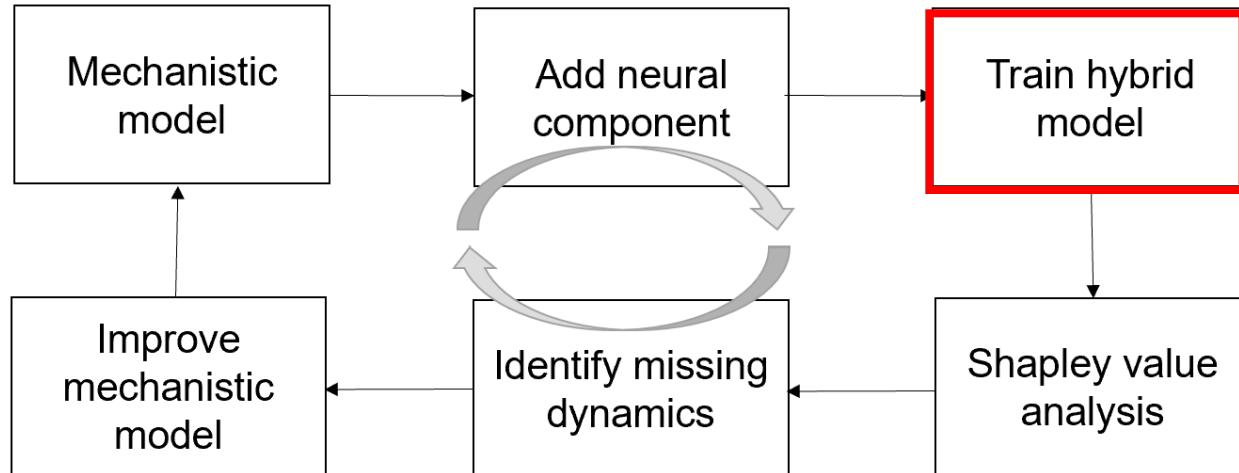
Example surrogate model for junctions in drinking water networks

Percentual differences in water quality (solute concentrations) between EPANET simulations with complete mixing in nodes and simulations performed using a surrogate model-derived mixing model.



Equation discovery

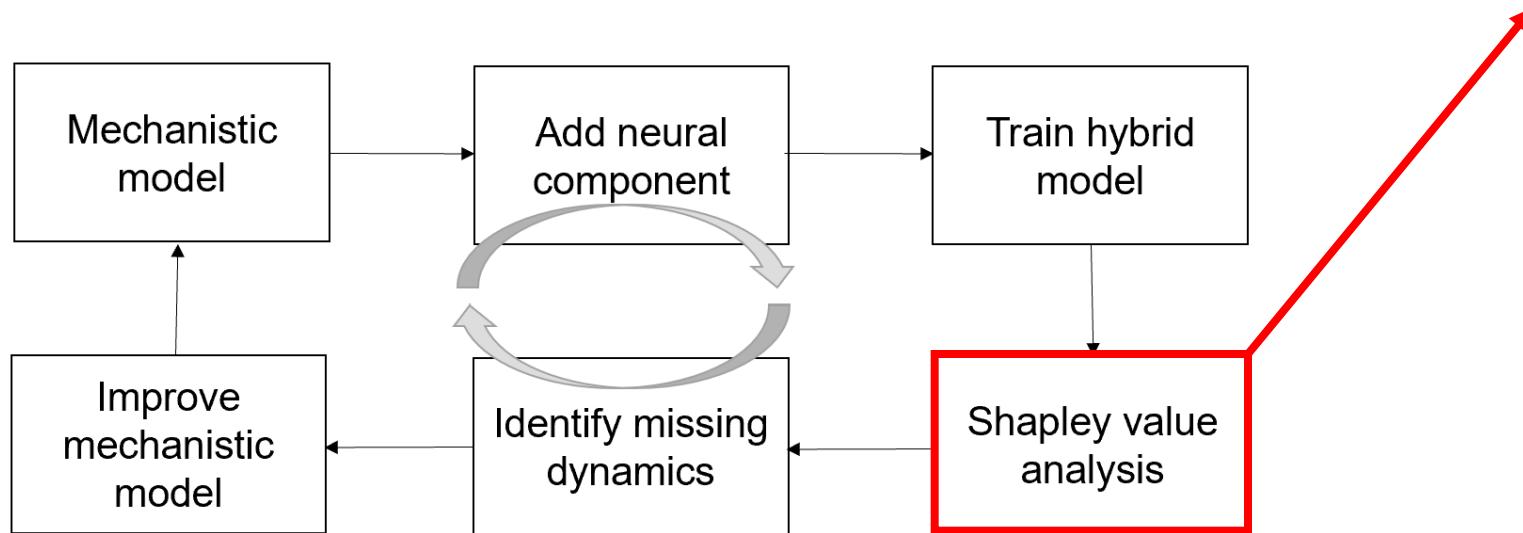
$$\frac{dx}{dt} = f(x) + nn(x)$$



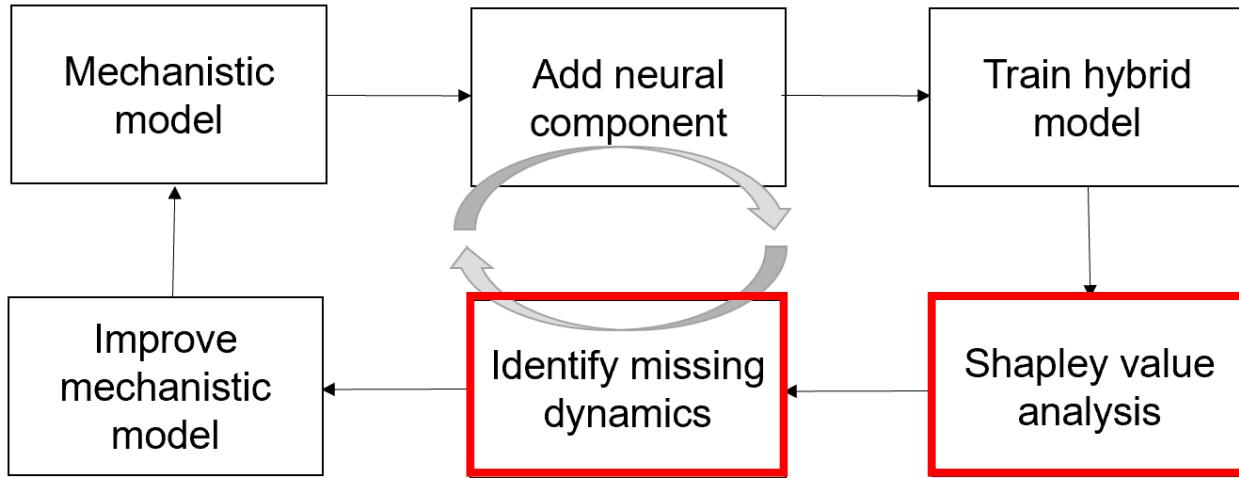
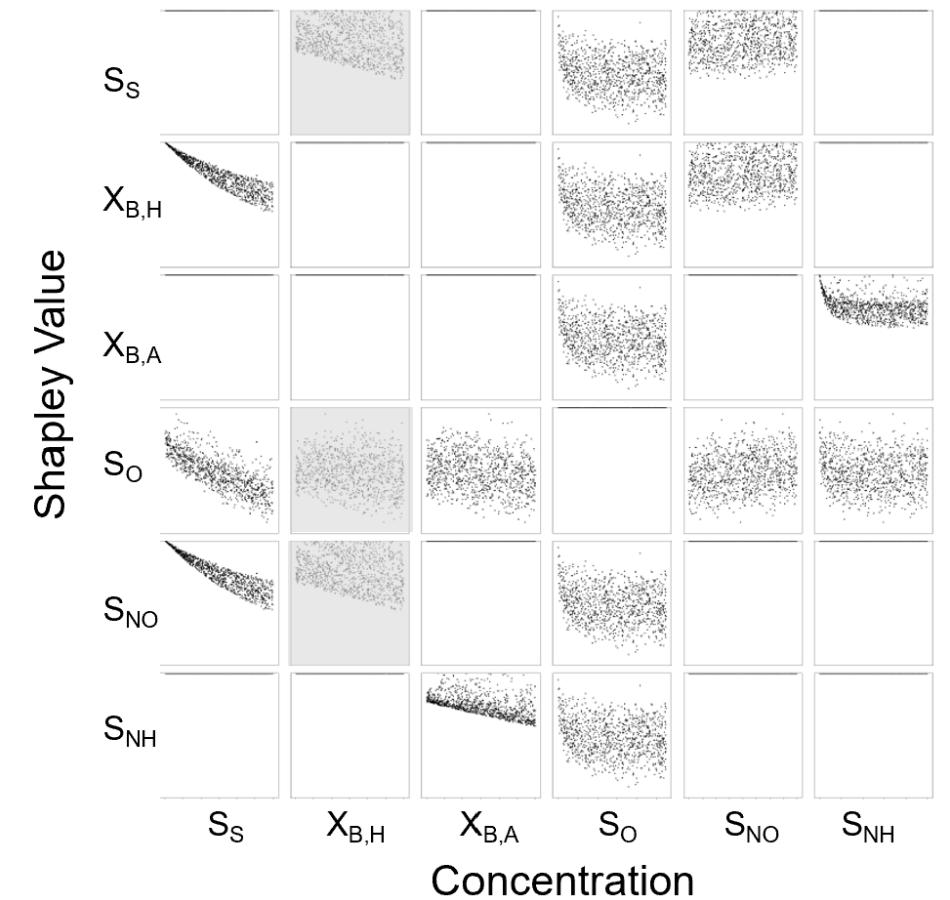
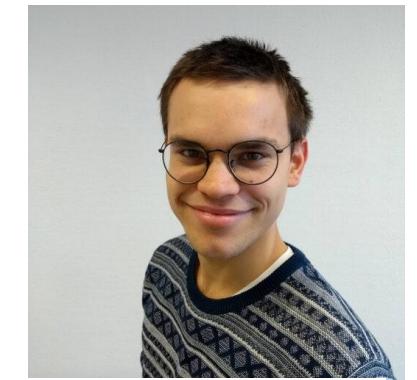
Equation discovery



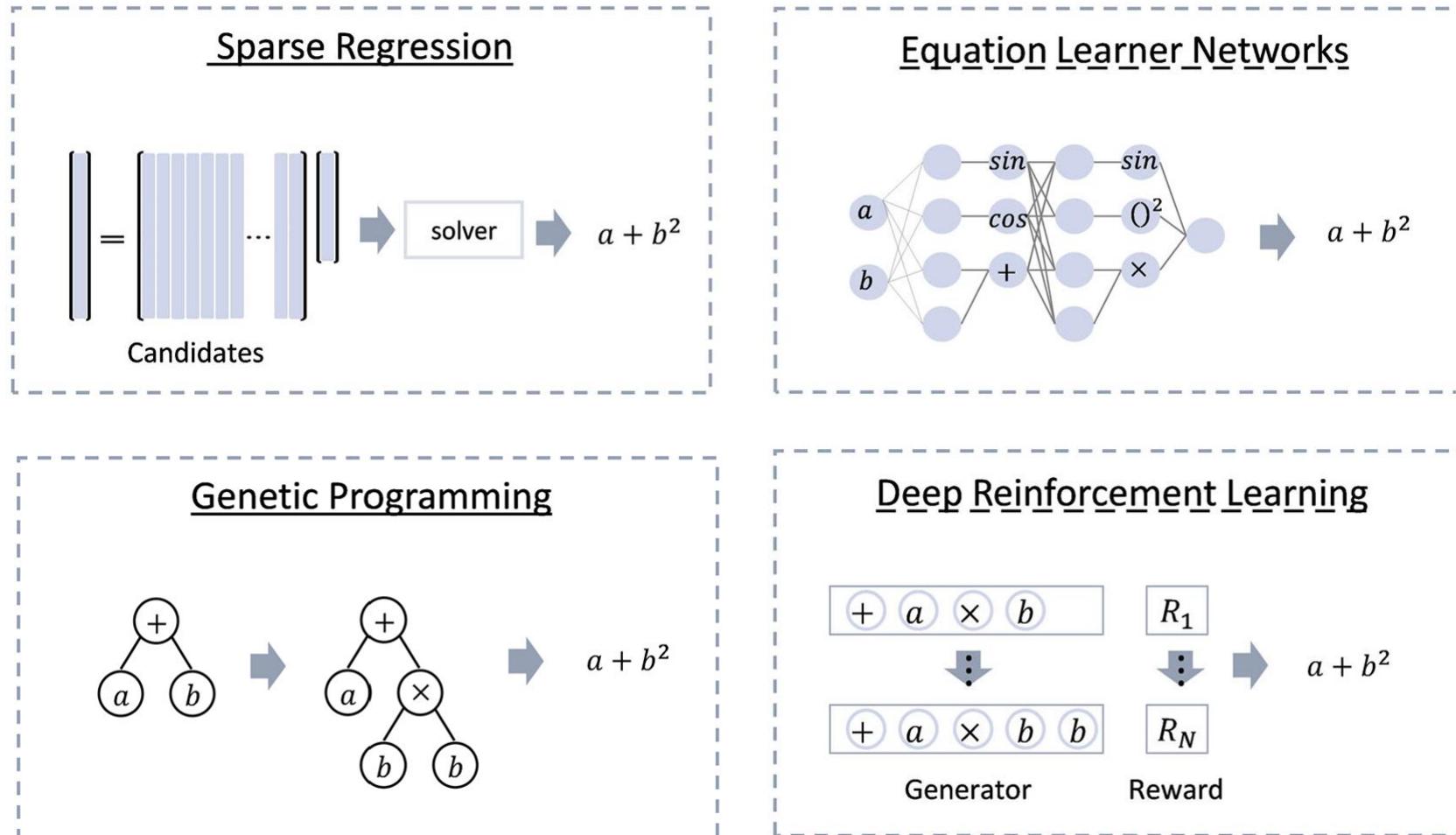
$$\frac{dx}{dt} = f(x) + nn(x)$$



Equation discovery



Equation discovery

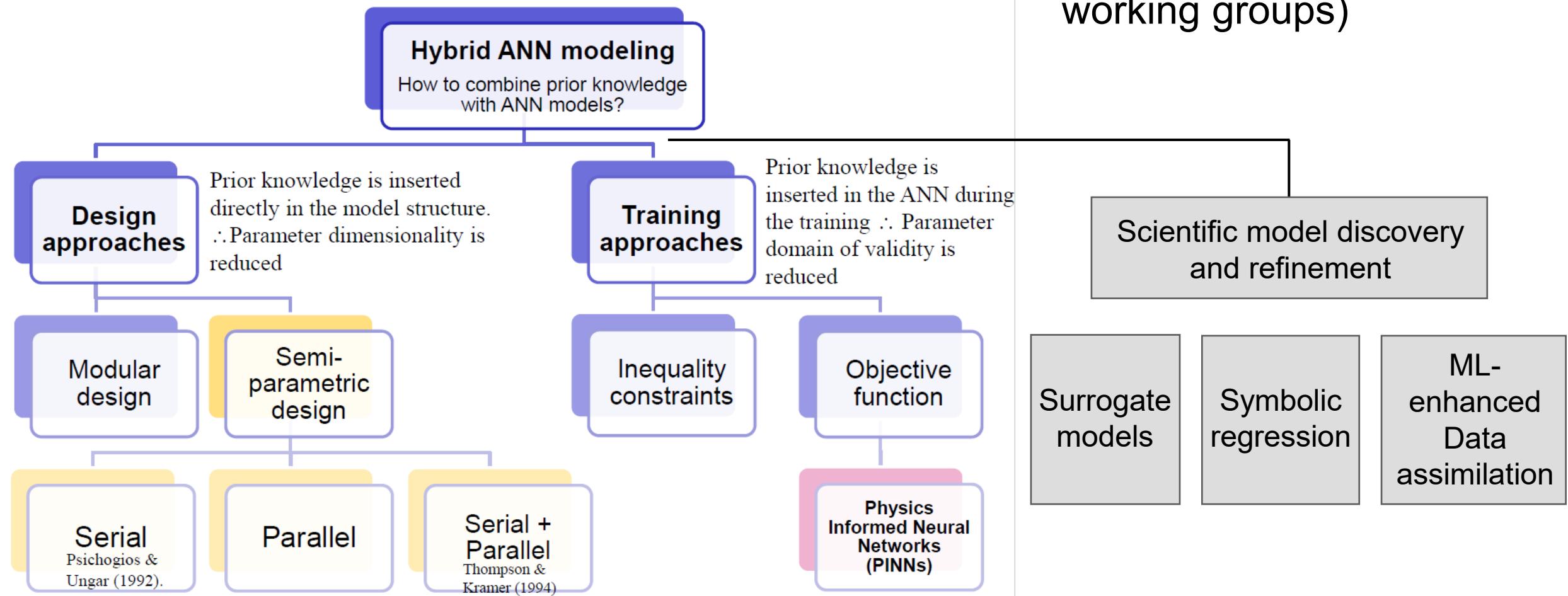


Take aways and perspectives

- SciML
 - Groups many methodologies to integrate domain knowledge with machine learning
 - Obtain scalable, domain-aware, robust, reliable, and interpretable learning
- Hybrid modelling is maturing for applications in the water sector but other SciML methods are underexplored
- Each method comes with challenges
- Common challenge is model/method selection
 - First efforts for GMP ungoing in a combined effort of the GMP and HM working groups

Scientific Machine Learning

Thompson, M. L., & Kramer, M. A. (1994) **Modeling chemical processes using prior knowledge and neural networks**. AIChE Journal, 40(8), 1328–1340. <https://doi.org/10.1002/aic.690400806>



How to integrate domain knowledge with data-driven models

Elena Torfs

