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Removal Using Stakeholder-
Centered Problem Solving

Dr. Kate Newhart Oregon State University

inspiring change



S, U.S. DEPARTMENT OF

=)

&
2 S
ZATES OS2

Water
Research

FOUNDATION

dcé

water is life®

METRO
WATER
& RECOVERY®

LA _-")
B A e

2 Northwestern
~/ University

UNIVERSITY OF
MICHIGAN

Oregon State
Y University

E BLACK&VEATCH

@

DEFINE PROBLEM
®

v
il
r GET DATA
=(5;

DEPLOY MODEL

| 1827
QX

TRAIN MODEL
®

KEY DISCIPLINES

@ PROCESS
ENGINEERING

@ PLANT
OPERATIONS

@ COMPUTER
SCIENCE

:

PREPARE DATA
00

water-ml-toolkit.com




WHAT MAKES A “GOOD” ML PROBLEM?

= Specific to an ML-appropriate objective
— Goal is to minimize energy, not to understand
chemical kinetics

= Measurable performance criteria
— X% improvement over status quo

= Implementation is feasible and integrated
into the model design

Yishi Zuo, 2021
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https://www.yishizuo.com/dont-be-a-hammer-looking-for-a-nail/
https://www.yishizuo.com/dont-be-a-hammer-looking-for-a-nail/

PHOSPHORUS RECOVERY

Primary Clarification B
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Sludge Holding Anaerobic Digestion
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PHOSPHORUS RECOVERY

* Mass balance + reaction
kinetics model is TERRIBLE

Primary Clarification

* Anaerobic digestate is
Meghrex NASTY. Sensors don’t
e B W survive, samples are
' difficult to analyze

Anaerobic Digestion

e Operators “guesstimate”

Reagent ) reagent and pH setpoints
(Mgcl,) 0000 (Air Stripping)
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DIFFERENT PROJECT, SAME IDEA

Environmental data is often time-series data. If taken frequently, data could be
autocorrelated and standard data science practices like random splitting can
lead to data leakage or artificially low errors.
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Features

Days

=5,

Data Preparation

MmRMR

- -

Feature Selection

OP Removed
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Influent OP
Effluent OP
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MagPrex™ Reactor

LR
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Ridge X
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Model Training

Cross Validation

Model Evaluation

Model Deployment
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BASED ON EFFLUENT PHOSPHORUS + INFLUENT
CONDITIONS, WHAT SHOULD WE BE DOSING?
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BASED ON EFFLUENT PHOSPHORUS + INFLUENT
CONDITIONS, WHAT SHOULD WE BE DOSING?

20 4 5

Underdose

Bin setpoint adjustments:
Increase, decrease, same

Correct 97% of the time

Actual Dosing Condition
Ideal
[ws]

Overdose

Incréase Sa h1e Decrease
Recommended Setpoint Adjustment
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DATA SPACE

(What is data space?)

IWA SG on Modelling and Integrated Assessment
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WHAT HAVE WE LEARNED?

= Machine learning models can be used to capture non-ideal / highly
non-linear process behavior

= Data are your solution... but also your problem
— Environmental datasets are smaller than you think!
— Beware artificially low errors / high accuracy!

= Put on your experimentalist hat!
— No universal model, data preparation, error metric, etc.
— Be creative and user-centric!

= This could be you!

= Now hiring PhD students!
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